Integrating variable wind load, aerodynamic, and structural analyses towards accurate fatigue life prediction in composite wind turbine blades

A comprehensive fatigue analysis framework for composite wind turbine blades has been developed. It includes variable wind loads from wind field simulation and aerodynamic analysis, stress prediction by finite element analysis, and fatigue damage evaluation based on the resulting fatigue data. The variable wind load is represented by a joint distribution of mean wind speed and turbulence intensity. In order to simulate realistic wind loads applied on the blade while maintaining affordable computational time, the sectional surface pressure fields obtained from the potential flow aerodynamics model XFOIL are transformed to match the lift, drag, and moment coefficients obtained using AeroDyn. Thus, the modified pressure distribution includes the effect of dynamic stall, rotation, and wake effects on the blade aerodynamics. A high-fidelity finite element blade model, in which the design of composite materials can be easily tailored, has been parameterized for detailed stress analysis. The non-proportional multi-axial complex stress states are involved when calculating 10-min fatigue damage of section points through laminate thickness. The annual fatigue damage is calculated based on the 10-min fatigue damage and the joint distribution of 10-min mean wind speed and 10-min turbulence intensity. Consequently, the blade fatigue effect due to not only the mean wind speed and the atmospheric turbulence in the short term, but also the wind load variation in a large spatiotemporal range, can be investigated. The developed fatigue analysis framework can facilitate reliability analysis and reliability-based design optimization of composite wind turbine blades.

[1]  Oh Joon Kwon,et al.  Predicting wind turbine blade loads and aeroelastic response using a coupled CFD–CSD method , 2014 .

[2]  Anastasios P. Vassilopoulos,et al.  Complex stress state effect on fatigue life of GRP laminates. Part II, Theoretical formulation , 2002 .

[3]  Mica Grujicic,et al.  Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades , 2010 .

[4]  Alain Nussbaumer,et al.  Fatigue Design of Steel and Composite Structures , 2011 .

[5]  Kyung K. Choi,et al.  Identification of marginal and joint CDFs using Bayesian method for RBDO , 2009 .

[6]  Lance Manuel,et al.  Comparing Estimates of Wind Turbine Fatigue Loads Using Time-Domain and Spectral Methods , 2007 .

[7]  Ole Gunnar Dahlhaug,et al.  Design and Fatigue Performance of Large Utility-Scale Wind Turbine Blades , 2013 .

[8]  Richard G. J. Flay,et al.  A simulation model for wind turbine blade fatigue loads , 1999 .

[9]  Matthew Stables,et al.  Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory , 2014 .

[10]  Roham Rafiee,et al.  Simulation of fatigue failure in a full composite wind turbine blade , 2006 .

[11]  W. E. Holley,et al.  Extrapolation of Extreme and Fatigue Loads Using Probabilistic Methods , 2004 .

[12]  Carlo L. Bottasso,et al.  Structural optimization of wind turbine rotor blades by multilevel sectional/multibody/3D-FEM analysis , 2013, Multibody System Dynamics.

[13]  Walter Musial,et al.  Trends in the Design, Manufacture and Evaluation of Wind Turbine Blades , 2003 .

[14]  Anastasios P. Vassilopoulos,et al.  Life prediction methodology for GFRP laminates under spectrum loading , 2004 .

[15]  Knut O. Ronold,et al.  Reliability-based fatigue design of wind-turbine rotor blades , 1999 .

[16]  Anastasios P. Vassilopoulos,et al.  Fatigue of Fiber-reinforced Composites , 2011 .

[17]  A. Puck,et al.  Guidelines for the determination of the parameters in Puck's action plane strength criterion , 2002 .

[18]  Nicholas J. Gaul,et al.  Reliability Analysis of Wind Turbine Blades for Fatigue Life under Wind Load Uncertainty , 2012 .

[19]  Spyros G. Voutsinas,et al.  STATE OF THE ART IN WIND TURBINE AERODYNAMICS AND AEROELASTICITY , 2006 .

[20]  J. R. Connell,et al.  Three-Dimensional Wind Simulation , 1998 .

[21]  Knut O. Ronold,et al.  Optimization of a design code for wind-turbine rotor blades in fatigue , 2001 .

[22]  Z. Hashin,et al.  A Fatigue Failure Criterion for Fiber Reinforced Materials , 1973 .

[23]  Dong-Hoon Choi,et al.  Structural optimization procedure of a composite wind turbine blade for reducing both material cost and blade weight , 2013 .

[24]  Jason Jonkman,et al.  FAST User's Guide , 2005 .

[25]  Dong-Hoon Choi,et al.  Multi-objective structural optimization of a HAWT composite blade based on ultimate limit state analysis , 2012 .

[26]  Patrick Moriarty,et al.  AeroDyn Theory Manual , 2005 .

[27]  C. Kensche,et al.  Introducing Low Cycle Fatigue in IEC Standard Range Pair Spectra , 2004 .

[28]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[29]  Marino Quaresimin,et al.  Two‐stage fatigue loading of woven carbon fibre reinforced laminates , 2003 .

[30]  James F. Manwell,et al.  Book Review: Wind Energy Explained: Theory, Design and Application , 2006 .

[31]  S. Mahadevan,et al.  A unified multiaxial fatigue damage model for isotropic and anisotropic materials , 2007 .

[32]  Christian N. Della,et al.  A multi-axial fatigue model for fiber-reinforced composite laminates based on Puck’s criterion , 2012 .

[33]  Yoshihiko Sugiyama,et al.  Investigation of fatigue life for a medium scale composite wind turbine blade , 2006 .

[34]  Xiaoping Du,et al.  Simulation-based time-dependent reliability analysis for composite hydrokinetic turbine blades , 2013 .

[35]  Sankaran Mahadevan,et al.  Probabilistic fatigue life prediction of multidirectional composite laminates , 2005 .

[36]  Leon Mishnaevsky,et al.  Materials of large wind turbine blades: recent results in testing and modeling , 2012 .

[37]  Bryan Harris,et al.  Fatigue in composites , 2003 .

[38]  N. Jenkins,et al.  Wind Energy Handbook: Burton/Wind Energy Handbook , 2011 .

[39]  Toru Fujii,et al.  Fatigue Behavior of a Plain-Woven Glass Fabric Laminate under Tension/Torsion Biaxial Loading , 1995 .

[40]  Jeroen A. S. Witteveen,et al.  Wind Turbine Performance Analysis Under Uncertainty , 2011 .

[41]  E. K. Gamstedt,et al.  An experimental investigation of the sequence effect in block amplitude loading of cross-ply composite laminates , 2002 .

[42]  A. P. Vassilopoulos Fatigue Life Prediction of Composites and Composite Structures , 2010 .

[43]  B. Jonkman Turbsim User's Guide: Version 1.50 , 2009 .

[44]  Steven R. Winterstein,et al.  Application of measured loads to wind turbine fatigue and reliability analysis , 1998 .

[45]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[46]  David A. Spera,et al.  Wind turbine technology : fundamental concepts of wind turbine engineering , 1994 .

[47]  Robert V. Hogg,et al.  Introduction to Mathematical Statistics. , 1966 .

[48]  S. Report,et al.  The Sandia 100-meter All-glass Baseline Wind Turbine Blade: SNL100-00 , 2011 .

[49]  C. Kong,et al.  Structural investigation of composite wind turbine blade considering various load cases and fatigue life , 2005 .

[50]  J. G. Leishman,et al.  A Semi-Empirical Model for Dynamic Stall , 1989 .

[51]  W. Van Paepegem,et al.  Effects of Load Sequence and Block Loading on the Fatigue Response of Fiber-Reinforced Composites , 2002 .