The laminar flow field in a Kenics KM static mixer has been studied using laser induced fluorescence and digital image analysis. Mixing was quantified by measurement of the number average striation thickness, variance of striation widths and interfacial area, for elements of length to diameter (L/D) ratios of 0.8, 1.0, 1.5 with 90° twist per element. From flow visualisations, transitions were observed in the flow where vortices developed above the first and second elements at Reynolds numbers of 43 and 90 for L/D = 0.8 and Reynolds numbers of 55 and 105 for L/D = 1.0. It was found that these vortices did not appreciably enhance mixing based on striation thickness and variance of striation widths measurements after 4 to 5 elements. The influence of viscosity ratio showed a viscosity ratio (dyed stream/bulk stream) of I had faster interfacial area growth and created more uniform mixtures compared to a viscosity ratio of 0.2 for flow rate ratio of 0.2.
On a etudie le champ d'ecoulement laminaire dans un melanger statique KM Kenics en utilisant la fluorescence induite par laser et l'analyse d'image. Le melange est quantifie par la mesure de l'epaisseur de striation moyenne, la variance des largeurs de striation et de la surface interfaciale, pour des elements ayant des rapports longueur-diametre (L/D) de 0,8, 1,0 et 1,5 avec une torsion de 90° par element. Par la visualisation des ecoulements, des transitions ont ete observees a des nombres de Reynolds de 43 et 90 pour L/D = 0,8 et des nombres de Reynolds de 55 ete 105 pour L/D = 1,0. On a trouve que ces vortex n'augmentaient pas de facon appreciable le melange base sur des mesures d'epaisseur de straition et de variance des largeurs de striation apres 4 ou 5 elements. L'influence du rapport de viscosite montre qu'un rapport de viscosite (courant colore/courant en vrac) de 1 a une croissance de surface interfaciale plus rapide et cree des melanges plus uniformes comparativement a un rapport de viscosite de 0,2 pour un rapport de debit de 0,2.
[1]
J. Ottino,et al.
Laminar mixing of polymeric liquids: a brief review and recent theoretical developments
,
1983
.
[2]
N. I. Heywood,et al.
MIXING EFFICIENCIES AND ENERGY REQUIREMENTS OF VARIOUS MOTIONLESS MIXER DESIGNS FOR LAMINAR MIXING APPLICATIONS
,
1984
.
[3]
J. R. Baker.
Motionless mixers stir up new uses
,
1991
.
[4]
E. B. Nauman,et al.
Enhancement of heat transfer and thermal homogenity with motionless mixers
,
1979
.
[5]
F. H. Ling,et al.
A NUMERICAL STUDY ON MIXING IN THE KENICS STATIC MIXER
,
1995
.
[6]
E. B. Nauman,et al.
Reactions and residence time distributions in motionless mixers
,
1982
.
[7]
Julio M. Ottino,et al.
Mechanical mixing efficiency parameter for static mixers
,
1983
.
[8]
John Arimond,et al.
A SIMULATION OF A MOTIONLESS MIXER
,
1985
.
[9]
Jerzy Bałdyga,et al.
Interaction between chemical reactions and mixing on various scales
,
1997
.
[10]
E. B. Nauman,et al.
On residence time and trajectory calculations in motionless mixers
,
1991
.
[11]
E. B. Nauman,et al.
FULLY DEVELOPED FLOW IN TWISTED TAPES: A MODEL FOR MOTIONLESS MIXERS
,
1987
.
[12]
D. D. Kale,et al.
Pressure drop for laminar flow of non-Newtonian fluids in static mixers
,
1991
.