Effect of probe pressure on cervical fluorescence spectroscopy measurements.

Fluorescence spectroscopy is a promising technology for detection of epithelial precancers and cancers. While age and menopausal status influence measurements in the cervix, other variables do not significantly affect the diagnosis. In this study we examine probe pressure as a variable. A fiber optic probe to measure fluorescence spectra at different calibrated levels of pressure was designed and tested. A pilot study was conducted measuring fluorescence excitation emission matrices in 20 patients at light, medium, and firm pressure. Spectroscopic data were pre-processed and analyzed to compare mean peak intensities as a function of pressure. Further statistical analyses tested for differences in intensities at each excitation/emission wavelength pair. Four providers made measurements from 41 sites; 33 yielded good quality spectroscopic data (22 squamous normal, 7 squamous abnormal, 3 columnar normal, 1 transformation zone) from 17 of 20 patients. At all pressure levels, abnormal tissue showed less fluorescence intensity than normal tissue, and post-menopausal patients showed higher fluorescence intensity than premenopausal patients, consistent with previous analyses. A permutation analysis suggests that pressure does not significantly affect fluorescence intensity or lineshape. While other studies are needed to confirm these findings, this study suggests that fluorescence spectroscopy is a robust technology likely not influenced by fiber optic probe pressure.

[1]  R. Richards-Kortum,et al.  Study of the fluorescence properties of normal and neoplastic human cervical tissue , 1993, Lasers in surgery and medicine.

[2]  R Richards-Kortum,et al.  Fluorescence spectroscopy of the cervix: Influence of acetic acid, cervical mucus, and vaginal medications , 1999, Lasers in surgery and medicine.

[3]  R Richards-Kortum,et al.  Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications. , 2001, Journal of biomedical optics.

[4]  D. Choy,et al.  Fluorescence spectra from cancerous and normal human breast and lung tissues , 1987, Annual Meeting Optical Society of America.

[5]  I J Bigio,et al.  Spectroscopic diagnosis of bladder cancer with elastic light scattering , 1995, Lasers in surgery and medicine.

[6]  K. Badizadegan,et al.  NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. , 2002, Cancer research.

[7]  Brian C. Wilson,et al.  In vivo Near-infrared Raman Spectroscopy: Demonstration of Feasibility During Clinical Gastrointestinal Endoscopy¶ , 2000, Photochemistry and photobiology.

[8]  R. Lotan,et al.  Autofluorescence Microscopy of Fresh Cervical-Tissue Sections Reveals Alterations in Tissue Biochemistry with Dysplasia¶ , 2001, Photochemistry and photobiology.

[9]  R. Richards-Kortum,et al.  Optimal Excitation Wavelengths for In Vivo Detection of Oral Neoplasia Using Fluorescence Spectroscopy¶ , 2000, Photochemistry and photobiology.

[10]  R Richards-Kortum,et al.  Cervical fluorescence of normal women , 1999, Lasers in surgery and medicine.

[11]  Sung K. Chang,et al.  Fluorescence spectroscopy for cervical precancer detection: Is there variance across the menstrual cycle? , 2002, Journal of biomedical optics.

[12]  R. Richards-Kortum,et al.  Fiber optic probes for biomedical optical spectroscopy. , 2003, Journal of biomedical optics.

[13]  N Ramanujam,et al.  In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Michele Follen,et al.  Effects of biographical variables on cervical fluorescence emission spectra. , 2003, Journal of biomedical optics.

[15]  W. Zijlstra,et al.  Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. , 1991, Clinical chemistry.

[16]  Sharon Thomsen,et al.  Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser‐induced fluorescence spectra at multiple excitation wavlengths , 1996, Lasers in surgery and medicine.

[17]  Irene Georgakoudi,et al.  Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo. , 2002, American journal of obstetrics and gynecology.

[18]  L Burke,et al.  Identification of cervical intraepithelial neoplasia (CIN) using UV‐excited fluorescence and diffuse‐reflectance tissue spectroscopy , 2001, Lasers in surgery and medicine.

[19]  Gregg Staerkel,et al.  Cervical Precancer Detection Using a Multivariate Statistical Algorithm Based on Laser‐Induced Fluorescence Spectra at Multiple Excitation Wavelengths , 1996, Photochemistry and photobiology.

[20]  Wei Xiang,et al.  Autofluorescence spectroscopy for the diagnosis of cervical intraepithelial neoplasia , 2002, BJOG : an international journal of obstetrics and gynaecology.

[21]  Jay L. Devore,et al.  Probability and statistics for engineering and the sciences , 1982 .

[22]  Michele Follen,et al.  Autofluorescence Patterns in Short-Term Cultures of Normal Cervical Tissue , 2000, Photochemistry and photobiology.

[23]  N Ramanujam,et al.  In vivo fluorescence spectroscopy: potential for non-invasive, automated diagnosis of cervical intraepithelial neoplasia and use as a surrogate endpoint biomarker. , 1994, Journal of cellular biochemistry. Supplement.