A new optimization method: Electro-Search algorithm

Natural phenomena have been the inspiration for proposing various optimization algorithms such as genetic algorithms (GA), particle swarm optimization (PSO) and simulated annealing (SA) methods. The main contribution of this study is to propose a novel optimization method, Electro-Search algorithm, based on the movement of electrons through the orbits around the nucleus of an atom. Electro-Search (ES) algorithm incorporates some physical principals such as Bohr model and Rydberg formula, adopting a three-phase scheme. In the atom spreading phase, the atoms (i.e., candidate solutions) are randomly spread all over the molecular space (i.e., search space). In the orbital transition phase, the electrons jump to larger orbits, aiming for orbits with higher energy levels (i.e., better fitness value). The atoms are then relocated towards the global optimum point in the atom relocation phase, navigated by other atoms’ trajectory. Besides, the ES tuning parameters are progressively updated through successive iterations via a self-tuning approach developed, namely Orbital-Tuner method (OTM). The efficiency of ES algorithm is examined in various optimization problems and compared with other well-known optimization methods. The effectiveness and robustness of ES algorithm is then tested in achieving the optimal design of an industrial problem. The results demonstrated the superiority of the new ES algorithm over other optimization algorithms tested, and outperforms current optimization algorithms in real-life industrial optimization problems.

[1]  Celso C. Ribeiro,et al.  Path-relinking intensification methods for stochastic local search algorithms , 2012, J. Heuristics.

[2]  Mazdak Shokrian,et al.  Application of a multi objective multi-leader particle swarm optimization algorithm on NLP and MINLP problems , 2014, Comput. Chem. Eng..

[3]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[4]  Christodoulos A. Floudas,et al.  A review of recent advances in global optimization , 2009, J. Glob. Optim..

[5]  Andries P. Engelbrecht,et al.  Computational Intelligence: An Introduction , 2002 .

[6]  George Tsatsaronis,et al.  Dynamic optimization with simulated annealing , 2005, Comput. Chem. Eng..

[7]  Johannes Josef Schneider,et al.  Stochastic optimization , 2006, Scientific computation.

[8]  Panos M. Pardalos,et al.  Encyclopedia of Optimization, Second Edition , 2009 .

[9]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[10]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[11]  Abdollah Homaifar,et al.  Constrained Optimization Via Genetic Algorithms , 1994, Simul..

[12]  Fred W. Glover,et al.  Principles of scatter search , 2006, Eur. J. Oper. Res..

[13]  Carlos A. Coello Coello,et al.  A simple multimembered evolution strategy to solve constrained optimization problems , 2005, IEEE Transactions on Evolutionary Computation.

[14]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[15]  A. Neumaier Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.

[16]  Gade Pandu Rangaiah,et al.  Stochastic global optimization : techniques and applications in chemical engineering , 2010 .

[17]  Yuan Xi-Gang,et al.  An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints , 2007 .

[18]  Sheldon H. Jacobson,et al.  Simultaneous Generalized Hill-Climbing Algorithms for Addressing Sets of Discrete Optimization Problems , 2005, INFORMS J. Comput..

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Ibrahim Eksin,et al.  Global optimization method for controlling a plant , 1994 .

[21]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[22]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[23]  M. Jacobs The structure of the metastable precipitates formed during ageing of an Al-Mg-Si alloy , 1972 .

[24]  I-Lung Chien,et al.  Investigating the need of a pre-concentrator column for acetic acid dehydration system via heterogeneous azeotropic distillation , 2006 .

[25]  Shyan-Shu Shieh,et al.  Plant-wide design and control of acetic acid dehydration system via heterogeneous azeotropic distillation and divided wall distillation , 2008 .

[26]  Ignacio E. Grossmann,et al.  Retrospective on optimization , 2004, Comput. Chem. Eng..

[27]  P. Boggs,et al.  Sequential quadratic programming for large-scale nonlinear optimization , 2000 .

[28]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[29]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[30]  Masao Fukushima,et al.  Tabu Search directed by direct search methods for nonlinear global optimization , 2006, Eur. J. Oper. Res..

[31]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[32]  Chun Lu,et al.  An improved GA and a novel PSO-GA-based hybrid algorithm , 2005, Inf. Process. Lett..

[33]  R. Harrington Part II , 2004 .

[34]  N. Bohr On the Constitution of Atoms and Molecules. Part II : Systems containing only a Single Nucleus , 1913 .

[35]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[36]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[37]  Sybil P. Parker,et al.  McGraw-Hill encyclopedia of physics , 1983 .

[38]  Gade Pandu Rangaiah,et al.  Multi-Objective Optimization in Chemical Engineering: Developments and Applications , 2013 .

[39]  Jose Leboreiro,et al.  Processes synthesis and design of distillation sequences using modular simulators: a genetic algorithm framework , 2004, Comput. Chem. Eng..

[40]  Ignacio E. Grossmann,et al.  Part II. Future perspective on optimization , 2004, Comput. Chem. Eng..

[41]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[42]  R. W. Mayne,et al.  Optimization With Discrete Variables Via Recursive Quadratic Programming: Part 1—Concepts and Definitions , 1989 .

[43]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[44]  张军,et al.  Orthogonal Methods Based Ant Colony Search for Solving Continuous Optimization Problems , 2008 .

[45]  R. V. Rao,et al.  Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique , 2010 .

[46]  R. G. Lerner,et al.  Encyclopedia of Physics , 1990 .

[47]  D. Himmelblau,et al.  Optimization of Chemical Processes , 1987 .

[48]  Günter Wozny,et al.  A new algorithm for global optimization: Molecular-Inspired Parallel Tempering , 2009, Comput. Chem. Eng..

[49]  Arshad Ahmad,et al.  A semicontinuous approach for heterogeneous azeotropic distillation processes , 2015, Comput. Chem. Eng..

[50]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[51]  Bruce E. Stuckman,et al.  A global search method for optimizing nonlinear systems , 1988, IEEE Trans. Syst. Man Cybern..