Comparative network clustering of direct repeats (DRs) and cas genes confirms the possibility of the horizontal transfer of CRISPR locus among bacteria.

[1]  W. Doolittle,et al.  Lateral gene transfer , 2011, Current Biology.

[2]  B. Graveley,et al.  RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex , 2009, Cell.

[3]  Stan J. J. Brouns,et al.  CRISPR-based adaptive and heritable immunity in prokaryotes. , 2009, Trends in biochemical sciences.

[4]  Shiraz A. Shah,et al.  CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties , 2009, Molecular microbiology.

[5]  Shiraz A. Shah,et al.  Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism. , 2009, Biochemical Society transactions.

[6]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[7]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[8]  Joel Dudley,et al.  MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences , 2008, Briefings Bioinform..

[9]  Philippe Horvath,et al.  Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus , 2007, Journal of bacteriology.

[10]  J. Banfield,et al.  Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. , 2007, Environmental microbiology.

[11]  Ibtissem Grissa,et al.  The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats , 2007, BMC Bioinformatics.

[12]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[13]  Douda Bensasson,et al.  Transition-Transversion Bias Is Not Universal: A Counter Example from Grasshopper Pseudogenes , 2007, PLoS genetics.

[14]  N. Grishin,et al.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action , 2006, Biology Direct.

[15]  J. S. Godde,et al.  The Repetitive DNA Elements Called CRISPRs and Their Associated Genes: Evidence of Horizontal Transfer Among Prokaryotes , 2006, Journal of Molecular Evolution.

[16]  Daniel H. Haft,et al.  A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes , 2005, PLoS Comput. Biol..

[17]  J. Townsend,et al.  Horizontal gene transfer, genome innovation and evolution , 2005, Nature Reviews Microbiology.

[18]  F. Dewhirst,et al.  Discordant 16S and 23S rRNA Gene Phylogenies for the Genus Helicobacter: Implications for Phylogenetic Inference and Systematics , 2005, Journal of bacteriology.

[19]  Serge Mostowy,et al.  The origin and evolution of Mycobacterium tuberculosis. , 2005, Clinics in chest medicine.

[20]  G. Vergnaud,et al.  CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. , 2005, Microbiology.

[21]  S. Ehrlich,et al.  Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. , 2005, Microbiology.

[22]  G Vergnaud,et al.  CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. , 2005, Microbiology.

[23]  J. García-Martínez,et al.  Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements , 2005, Journal of Molecular Evolution.

[24]  W. Doolittle,et al.  Lateral gene transfer and the origins of prokaryotic groups. , 2003, Annual review of genetics.

[25]  L. Schouls,et al.  Identification of genes that are associated with DNA repeats in prokaryotes , 2002, Molecular microbiology.

[26]  M. Ragan Detection of lateral gene transfer among microbial genomes. , 2001, Current opinion in genetics & development.

[27]  M. Ermolaeva,et al.  Synonymous codon usage in bacteria. , 2001, Current issues in molecular biology.

[28]  Anton J. Enright,et al.  BioLayout-an automatic graph layout algorithm for similarity visualization , 2001, Bioinform..

[29]  E. Koonin,et al.  Horizontal gene transfer in prokaryotes: quantification and classification. , 2001, Annual review of microbiology.

[30]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[31]  Z. Yang,et al.  Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. , 2000, Molecular biology and evolution.

[32]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[33]  G. Bernardi,et al.  Synonymous and Nonsynonymous Substitutions in Mammalian Genes: Intragenic Correlations , 1998, Journal of Molecular Evolution.

[34]  R. Fleischmann,et al.  Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.

[35]  J R Roth,et al.  Selfish operons: horizontal transfer may drive the evolution of gene clusters. , 1996, Genetics.

[36]  T. Ohta,et al.  Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. , 1995, Journal of molecular evolution.

[37]  K. Makino,et al.  Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product , 1987, Journal of bacteriology.

[38]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[39]  N. Saito The neighbor-joining method : A new method for reconstructing phylogenetic trees , 1987 .