AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTiNGS). II. DISCOVERY OF METAL-POOR DUSTY AGB STARS

The DUSTiNGS survey (DUST in Nearby Galaxies with Spitzer) is a 3.6 and 4.5 ?m imaging survey of 50 nearby dwarf galaxies designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. Using two epochs, spaced approximately six months apart, we identify a total of 526 dusty variable AGB stars (sometimes called extreme or x-AGB stars; [3.6]-[4.5] > 0.1 mag). Of these, 111 are in galaxies with [Fe/H] < ?1.5 and 12 are in galaxies with [Fe/H] < ?2.0, making them the most metal-poor dust-producing AGB stars known. We compare these identifications to those in the literature and find that most are newly discovered large-amplitude variables, with the exception of 30 stars in NGC 185 and NGC 147, 1 star in IC 1613, and 1 star in Phoenix. The chemical abundances of the x-AGB variables are unknown, but the low metallicities suggest that they are more likely to be carbon-rich than oxygen-rich and comparisons with existing optical and near-IR photometry confirm that 70 of the x-AGB variables are confirmed or likely carbon stars. We see an increase in the pulsation amplitude with increased dust production, supporting previous studies suggesting that dust production and pulsation are linked. We find no strong evidence linking dust production with metallicity, indicating that dust can form in very metal-poor environments.

[1]  A. Dupree,et al.  Spitzer spectra of evolved stars in ω Centauri and their low-metallicity dust production , 2011, 1104.5155.

[2]  P. Martin,et al.  The Size Distribution of Interstellar Dust Particles as Determined from Extinction , 1993 .

[3]  M. Feast,et al.  Asymptotic giant branch stars in the Phoenix dwarf galaxy , 2007, 0801.0038.

[4]  Suzanne L. Hawley,et al.  THE PROPERTIES OF LONG-PERIOD VARIABLES IN THE LARGE MAGELLANIC CLOUD FROM MACHO , 2008, 0808.1737.

[5]  H. E. Schwarz,et al.  A census of AGB stars in Local Group galaxies: II. NGC 185 and NGC 147 , 2003 .

[6]  A. Dupree,et al.  A SPITZER SPACE TELESCOPE ATLAS OF ω CENTAURI: THE STELLAR POPULATION, MASS LOSS, AND THE INTRACLUSTER MEDIUM , 2007, 0801.2172.

[7]  C. Woodward,et al.  A Spitzer IRAC Census of the Asymptotic Giant Branch Populations in Local Group Dwarfs. II. IC 1613 , 2006, 0706.3213.

[8]  Paolo Ventura,et al.  Dust production rate of asymptotic giant branch stars in the Magellanic Clouds , 2014 .

[9]  L. Girardi,et al.  IS THERE A METALLICITY CEILING TO FORM CARBON STARS?—A NOVEL TECHNIQUE REVEALS A SCARCITY OF C STARS IN THE INNER M31 DISK , 2013, 1307.4081.

[10]  S. Srinivasan,et al.  THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. IV. CONSTRUCTION AND VALIDATION OF A GRID OF MODELS FOR OXYGEN-RICH AGB STARS, RED SUPERGIANTS, AND EXTREME AGB STARS , 2014, 1407.8452.

[11]  D. N. Burrows,et al.  Infrared and X-Ray Evidence for Circumstellar Grain Destruction by the Blast Wave of Supernova 1987A , 2007, 0712.2759.

[12]  T. Henning,et al.  Dust input from AGB stars in the Large Magellanic Cloud , 2013, 1305.3521.

[13]  B. Letarte,et al.  A Carbon star approach to IC 10: Distance and correct size , , 2004 .

[14]  J. Telting,et al.  Long-period variables in NGC 147 and NGC 185 (Lorenz+, 2011) , 2011, 1106.5280.

[15]  Linda J. Smith,et al.  SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.

[16]  I. Iben,et al.  Asymptotic Giant Branch Evolution and Beyond , 1983 .

[17]  A. Zijlstra,et al.  Carbon enrichment of the evolved stars in the Sagittarius dwarf spheroidal , 2012, 1209.2563.

[18]  Massimo Marengo,et al.  AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTINGS). I. OVERVIEW , 2014, 1411.4053.

[19]  P. Wood,et al.  Evolution of Low- and Intermediate-Mass Stars to the End of the Asymptotic Giant Branch with Mass Loss , 1993 .

[20]  M. Feast,et al.  Asymptotic giant branch stars in the Leo I dwarf spheroidal galaxy , 2010, 1003.4135.

[21]  A. Zijlstra,et al.  The trigger of the asymptotic giant branch superwind: the importance of carbon , 2008, 0807.3730.

[22]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[23]  E. Pellegrini,et al.  THE CO-TO-H2 CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES , 2012, 1212.1208.

[24]  J. Bernard-Salas,et al.  Dust Formation in a Galaxy with Primitive Abundances , 2009, Science.

[25]  Joana M. Oliveira,et al.  DUST PRODUCTION AND MASS LOSS IN THE GALACTIC GLOBULAR CLUSTER NGC 362 , 2009, 0909.5154.

[26]  Linda J. Smith,et al.  SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). I. OVERVIEW , 2011, 1107.4313.

[27]  S. Demers,et al.  Carbon star survey of Local Group galaxies IX. The spheroidal galaxy NGC 185 , 2004 .

[28]  C. Woodward,et al.  A SPITZER STUDY OF ASYMPTOTIC GIANT BRANCH STARS. III. DUST PRODUCTION AND GAS RETURN IN LOCAL GROUP DWARF IRREGULAR GALAXIES , 2009, 0903.3871.

[29]  A. Zijlstra,et al.  The superwind mass-loss rate of the metal-poor carbon star LI-LMC 1813 in the LMC cluster KMHK 1603 , 2003, astro-ph/0302083.

[30]  C. Megan Urry,et al.  VARIABILITY OF ACTIVE GALACTIC NUCLEI , 1997 .

[31]  M. Meixner,et al.  EXAMINING THE INFRARED VARIABLE STAR POPULATION DISCOVERED IN THE SMALL MAGELLANIC CLOUD USING THE SAGE-SMC SURVEY , 2014, 1501.01591.

[32]  J. Bernard-Salas,et al.  CARBON-RICH DUST PRODUCTION IN METAL-POOR GALAXIES IN THE LOCAL GROUP , 2012, 1204.5754.

[33]  C Star Survey of Local Group Dwarf Galaxies. III. The Sagittarius Dwarf Irregular and the Leo I Dwarf Spheroidal Galaxies , 2001, astro-ph/0109512.

[34]  M. Sauvage,et al.  Probing the dust properties of galaxies up to submillimetre wavelengths. II. Dust-to-gas mass ratio trends with metallicity and the submm excess in dwarf galaxies , 2011, 1104.0827.

[35]  E. Sedlmayr,et al.  Dust-driven Winds and Mass Loss of C-rich AGB Stars with subsolar Metallicities , 2008, 0805.3656.

[36]  A Spitzer IRAC Census of the Asymptotic Giant Branch Populations in Local Group Dwarfs. I. WLM , 2006, astro-ph/0611095.

[37]  C. Carilli,et al.  350 μm dust emission from high-redshift quasars , 2006, astro-ph/0603121.

[38]  J. Melbourne,et al.  THE CONTRIBUTION OF THERMALLY-PULSING ASYMPTOTIC GIANT BRANCH AND RED SUPERGIANT STARS TO THE LUMINOSITIES OF THE MAGELLANIC CLOUDS AT 1–24 μm , 2012, 1212.4169.

[39]  M. Groenewegen,et al.  Near-infrared spectroscopy of AGB star candidates in Fornax, Sculptor, and NGC 6822 , , 2009, 0907.4024.

[40]  R. Indebetouw,et al.  SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). II. COOL EVOLVED STARS , 2011, 1106.5026.

[41]  J. Blommaert,et al.  Spitzer spectroscopy of carbon stars in the Small Magellanic Cloud , 2006, astro-ph/0611071.

[42]  H. J. Habing,et al.  AGB stars in the Magellanic Clouds II. The rate of star formation across the LMC , 2005, astro-ph/0509881.

[43]  University College London,et al.  Spitzer Space Telescope spectral observations of AGB stars in the Fornax dwarf spheroidal galaxy , 2007, 0709.3199.

[44]  T. Tanabé,et al.  Asymptotic giant branch stars in the Fornax dwarf spheroidal galaxy , 2008, 0812.0903.

[45]  P. Massey,et al.  Oxygen-rich dust production in IC 10 , 2012, 1209.1023.

[46]  Linda J. Smith,et al.  SPITZER SAGE SURVEY OF THE LARGE MAGELLANIC CLOUD. III. STAR FORMATION AND ∼1000 NEW CANDIDATE YOUNG STELLAR OBJECTS , 2008 .

[47]  S. Demers,et al.  Variability of halo carbon stars , 2012 .

[48]  H. J. Habing,et al.  Circumstellar envelopes and Asymptotic Giant Branch stars , 1996 .

[49]  Near-IR photometry of asymptotic giant branch stars in the dwarf elliptical galaxy NGC 147 , 2006 .

[50]  C. Woodward,et al.  Stellar Populations and Mass Loss in M15: A Spitzer Space Telescope Detection of Dust in the Intracluster Medium , 2006, astro-ph/0606236.

[51]  S. Srinivasan,et al.  The mass-loss return from evolved stars to the Large Magellanic Cloud - V. The GRAMS carbon-star model grid , 2011, 1106.3256.

[52]  A. I. Boothroyd,et al.  Breakdown of the core mass-luminosity relation at high luminosities on the asymptotic giant branch , 1992 .

[53]  M. Barlow,et al.  The global gas and dust budget of the Large Magellanic Cloud: AGB stars and supernovae, and the impact on the ISM evolution , 2009, 0903.1123.

[54]  S. Srinivasan,et al.  THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. VI. LUMINOSITIES AND MASS-LOSS RATES ON POPULATION SCALES , 2012, 1205.0280.

[55]  F. Fraternali,et al.  The extended structure of the dwarf irregular galaxies Sextans A and Sextans B. Signatures of tidal distortion in the outskirts of the Local Group , 2014, 1404.1697.

[56]  J. Bernard-Salas,et al.  SPITZER SPECTROSCOPY OF MASS-LOSS AND DUST PRODUCTION BY EVOLVED STARS IN GLOBULAR CLUSTERS , 2010, 1006.5016.

[57]  E. Kerins,et al.  VISTA variables in the Sagittarius dwarf spheroidal galaxy: pulsation-versus dust-driven winds on the giant branches , 2014, 1401.3558.

[58]  University College London,et al.  Discovery of Extreme Carbon Stars in the Large Magellanic Cloud , 2008, 0809.5107.

[59]  A. Bolatto,et al.  The rarity of dust in metal-poor galaxies , 2013, Nature.

[60]  L. Girardi,et al.  Synthetic photometry for carbon rich giants I. Hydrostatic dust-free models ⋆ , 2009, 0905.4415.

[61]  J. Leisenring,et al.  The SAGE-Spec Spitzer Legacy Program: The Life Cycle of Dust and Gas in the Large Magellanic Cloud , 2010, 1004.1142.

[62]  Joana M. Oliveira,et al.  Molecules and dust production in the Magellanic Clouds , 2008, 0806.3557.

[63]  C. Leitherer,et al.  Spitzer SAGE Survey of the Large Magellanic Cloud. II. Evolved Stars and Infrared Color-Magnitude Diagrams , 2006, astro-ph/0608189.

[64]  A. Andersen,et al.  Stellar sources of dust in the high-redshift Universe , 2009, 0905.1691.

[65]  R. Humphreys,et al.  The M33 Variable Star Population Revealed by Spitzer , 2007, 0704.3026.

[66]  S. Demers,et al.  Carbon star survey of Local Group galaxies - X. Wolf-Lundmark-Melotte a galaxy with an extreme C/M ratio , 2004 .

[67]  Near‐infrared photometry of carbon stars★ , 2006, astro-ph/0603504.

[68]  A. Dupree,et al.  Giants in the globular cluster ω Centauri: dust production, mass-loss and distance , 2008, 0812.0326.

[69]  L. Mantegazza,et al.  Variable stars in nearby galaxies - IV. Fields C and D of IC 1613 , 2001 .

[70]  J. Loon,et al.  The UK Infrared Telescope M33 monitoring project – III. Feedback from dusty stellar winds in the central square kiloparsec , 2013, 1304.3782.

[71]  C. Leitherer,et al.  THE MASS LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD: EMPIRICAL RELATIONS FOR EXCESS EMISSION AT 8 AND 24 μm , 2009, 0903.1661.

[72]  J. Blommaert,et al.  A Spitzer mid-infrared spectral survey of mass-losing carbon stars in the Large Magellanic Cloud , 2006, astro-ph/0602531.

[73]  Garching,et al.  The Local Group Census: Planetary nebulae in IC 10, Leo A and Sextans A , 2003, astro-ph/0305105.

[74]  W. Kunkel,et al.  A Carbon Star Survey of the Local Group Dwarf Galaxies. I. IC 1613 , 2000 .

[75]  A. Bolatto,et al.  Submitted to ApJ. Preprint typeset using L ATEX style emulateapj v. 05/04/06 MEASURING DUST PRODUCTION IN THE SMALL MAGELLANIC CLOUD CORE-COLLAPSE SUPERNOVA REMNANT 1E0102.2−7219 , 2022 .

[76]  B. Shiao,et al.  FUNDAMENTAL PARAMETERS, INTEGRATED RED GIANT BRANCH MASS LOSS, AND DUST PRODUCTION IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE , 2011, 1101.1095.

[77]  R. Rich,et al.  A Spitzer Space Telescope survey of extreme asymptotic giant branch stars in M32 , 2014, 1410.4504.

[78]  S. Demers,et al.  A Carbon Star Survey of the Local Group Dwarf Galaxies. II. Pegasus, DDO 210, and Tucana , 2000, astro-ph/0008061.

[79]  Ian Robson,et al.  Submillimetre observations of z > 6 quasars , 2004, astro-ph/0405177.

[80]  M. Cioni,et al.  Near-infrared photometry of carbon stars in the Sagittarius dwarf irregular galaxy and DDO 210 , 2007, 0709.0918.

[81]  C. Leitherer,et al.  VARIABLE EVOLVED STARS AND YOUNG STELLAR OBJECTS DISCOVERED IN THE LARGE MAGELLANIC CLOUD USING THE SAGE SURVEY , 2008, 0811.0408.

[82]  Xiaohui Fan,et al.  Dust emission from the most distant quasars , 2003, astro-ph/0305116.

[83]  M. Feast,et al.  Obscured asymptotic giant branch variables in the Large Magellanic Cloud and the period–luminosity relation , 2003, astro-ph/0302246.

[84]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[85]  J. Ball,et al.  Time variations in the OH microwave and infrared emission from late-type stars , 1974 .

[86]  M. L. Pumo,et al.  Evolution of thermally pulsing asymptotic giant branch stars - I. The COLIBRI code , 2013, 1305.4485.

[87]  J. Blommaert,et al.  Luminosities and mass-loss rates of carbon stars in the Magellanic Clouds , 2007 .

[88]  S. Demers,et al.  Carbon star survey in the Local Group - VIII. Probing the stellar halo of NGC 147 , 2004 .

[89]  L. Colangeli,et al.  Optical constants of cosmic carbon analogue grains — I. Simulation of clustering by a modified continuous distribution of ellipsoids , 1996 .

[90]  C. Gall,et al.  DUST DESTRUCTION RATES AND LIFETIMES IN THE MAGELLANIC CLOUDS , 2014, 1411.4574.

[91]  Mario Mateo,et al.  Deep Hubble Space Telescope Imaging of IC 1613. I. Variable Stars and Distance , 2000, astro-ph/0012150.

[92]  K. Gordon,et al.  THE DUST BUDGET OF THE SMALL MAGELLANIC CLOUD: ARE ASYMPTOTIC GIANT BRANCH STARS THE PRIMARY DUST SOURCE AT LOW METALLICITY? , 2012 .

[93]  THE VARIABLE-STAR POPULATION IN PHOENIX: COEXISTENCE OF ANOMALOUS AND SHORT-PERIOD CLASSICAL CEPHEIDS AND DETECTION OF RR LYRAE VARIABLES , 2004, astro-ph/0402400.

[94]  J. Hjorth,et al.  Dust grain growth in the interstellar medium of 5 < z < 6.5 quasars , 2010, 1006.5466.