Inner Rim of a Molecular Disk Spatially Resolved in Infrared CO Emission Lines

We present high-resolution infrared spectroscopy of the Herbig Ae star HD 141569A in the CO v = 2-1 transition. With the angular resolution attained by the adaptive optics system, the gas disk around HD 141569A is spatially resolved down to its inner-rim truncation. The size of the inner clearing is 11 ± 2 AU in radius, close to the gravitational radius of the star. The rough coincidence with the gravitational radius indicates that the viscous accretion working together with photoevaporation by stellar radiation has cleared the inner part of the disk.

[1]  Aki Roberge,et al.  Coronagraphic Imaging of Pre-Main-Sequence Stars with the Hubble Space Telescope Space Telescope Imaging Spectrograph. I. The Herbig Ae Stars , 2005 .

[2]  U. Gorti,et al.  Photoevaporation of Circumstellar Disks Due to External Far-Ultraviolet Radiation in Stellar Aggregates , 2004, astro-ph/0404383.

[3]  D. Johnstone,et al.  Photoevaporation of the Solar Nebula and the Formation of the Giant Planets , 1993 .

[4]  The Gravitational Radius of an Irradiated Disk , 2003, Publications of the Astronomical Society of Australia.

[5]  C. Kulesa,et al.  CO Emission from Disks around AB Aurigae and HD 141569: Implications for Disk Structure and Planet Formation Timescales , 2003 .

[6]  M. Franx,et al.  Hubble Space Telescope ACS Coronagraphic Imaging of the Circumstellar Disk around HD 141569A , 2003 .

[7]  J. Carr Near-infrared CO emission in young stellar objects , 1989 .

[8]  W. Thi,et al.  Evidence for an inner molecular disk around massive Young Stellar Objects , 2004, astro-ph/0410098.

[9]  R. Knacke,et al.  Detection of Extended Thermal Infrared Emission around the Vega-like Source HD 141569 , 2000, The Astrophysical journal.

[10]  Jack J. Lissauer,et al.  Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core , 2005 .

[11]  Disk eccentricity and embedded planets , 2005, astro-ph/0510393.

[12]  Formation of Giant Planets by Concurrent Accretion of Solids and Gas inside an Anticyclonic Vortex , 2005, astro-ph/0510479.

[13]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[14]  CO emission from discs around isolated HAeBe and Vega-excess stars , 2005, astro-ph/0502544.

[15]  S. Ruden Evolution of Photoevaporating Protoplanetary Disks , 2004 .

[16]  E. Becklin,et al.  Mid-Infrared Images of the Debris Disk around HD 141569 , 2002 .

[17]  R. Clayton Oxygen Isotopes in Meteorites , 2003 .

[18]  C. Clarke,et al.  The dispersal of circumstellar discs: the role of the ultraviolet switch , 2001 .

[19]  Yosuke Minowa,et al.  Performance of Subaru Cassegrain Adaptive Optics System , 2004 .

[20]  L. Hartmann,et al.  Viscous diffusion and photoevaporation of stellar disks , 2002, astro-ph/0209498.

[21]  D. Kring,et al.  The Mass Spectra of Cores in Turbulent Molecular Clouds and Implications for the Initial Mass Function , 2005 .

[22]  Weinberger,et al.  The Circumstellar Disk of HD 141569 Imaged with NICMOS. , 1999, The Astrophysical journal.

[23]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[24]  Frank H. Shu,et al.  Photoevaporation of Disks around Massive Stars and Application to Ultracompact H II Regions , 1994 .

[25]  Naruhisa Takato,et al.  First results from the Subaru AO system , 2002, SPIE Optics + Photonics.

[26]  T. Henning,et al.  Upper limits on CO 4.7 mum emission from disks around five Herbig Ae/Be stars , 2005, astro-ph/0503317.

[27]  J. Najita,et al.  Gas in the Terrestrial Planet Region of Disks: CO Fundamental Emission from T Tauri Stars , 2003 .

[28]  J. Carlstrom,et al.  Infrared CO Emission from Young Stars: Accretion Disks and Neutral Winds , 1995 .

[29]  A. Boss Formation of gas and ice giant planets , 2002 .

[30]  G. Wasserburg,et al.  Short-Lived Nuclei in the Early Solar System: A Low Mass Stellar Source? , 1999, Publications of the Astronomical Society of Australia.

[31]  Willy Benz,et al.  Models of giant planet formation with migration and disc evolution , 2004 .

[32]  J. Lyons,et al.  CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula , 2005, Nature.

[33]  David E. Trilling,et al.  Decay of Planetary Debris Disks , 2005 .

[34]  E. Young,et al.  First-Overtone CO Variability in Young Stellar Objects , 1997 .

[35]  C. J. Clarke,et al.  The differential lifetimes of protostellar gas and dust disks , 2005 .

[36]  D. Johnstone,et al.  Photoevaporation of Circumstellar Disks around Young Stars , 2004, astro-ph/0402241.

[37]  T. Millar,et al.  Rate Coefficients in Astrochemistry. Proceedings of a Conference held in UMIST, Manchester, United Kingdom, September 21-24, 1987. , 1988 .

[38]  M. Barlow,et al.  Optical, infrared and millimetre-wave properties of Vega-like systems - II. Radiative transfer modelling , 1996 .

[39]  GROUND-BASED NEAR-INFRARED IMAGING OF THE HD 141569 CIRCUMSTELLAR DISK , 2002, astro-ph/0211648.

[40]  C. Clarke,et al.  Constraints on the ionizing flux emitted by T Tauri stars , 2005 .

[41]  T. Forveille,et al.  Inhibition of giant-planet formation by rapid gas depletion around young stars , 1995, Nature.

[42]  Cfa,et al.  Study of the properties and spectral energy distributions of the Herbig AeBe stars HD 34282 and HD 141569 , 2004, astro-ph/0402599.

[43]  Hisayoshi Yurimoto,et al.  Molecular Cloud Origin for the Oxygen Isotope Heterogeneity in the Solar System , 2004, Science.

[44]  National Optical Astronomy Observatory,et al.  Accretion Signatures from Massive Young Stellar Objects , 2004, Proceedings of the International Astronomical Union.

[45]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[46]  D. Mouillet,et al.  Asymmetries in the HD 141569 circumstellar disk , 2001 .

[47]  S. Inaba,et al.  Formation of gas giant planets: core accretion models with fragmentation and planetary envelope , 2003 .

[48]  E. Dishoeck Photodissociation and Photoionization Processes , 1988 .

[49]  L. Hartmann,et al.  Magnetospheres and Disk Accretion in Herbig Ae/Be Stars , 2004, astro-ph/0409008.

[50]  S. E. Persson,et al.  Emission from CO Band Heads in Young Stellar Objects , 1987 .

[51]  H. Walker,et al.  An infrared image of the dust disc around ß Pic , 1999 .

[52]  L. Hartmann,et al.  Emission-Line Diagnostics of T Tauri Magnetospheric Accretion. II. Improved Model Tests and Insights into Accretion Physics , 2001 .

[53]  Theodore Simon,et al.  Discovery of CO Gas in the Inner Disk of TW Hydrae , 2004 .

[54]  Joan Najita,et al.  Kinematic Diagnostics of Disks around Young Stars: CO Overtone Emission from WL 16 and 1548C27 , 1996 .

[55]  R. Rich,et al.  Stellar Companions and the Age of HD 141569 and Its Circumstellar Disk , 2000, astro-ph/0007170.

[56]  E. Observatory,et al.  Evidence for a hot dust-free inner disk around 51 Oph , 2004, astro-ph/0412514.

[57]  Alan T. Tokunaga,et al.  Infrared camera and spectrograph for the Subaru Telescope , 1994, Astronomical Telescopes and Instrumentation.

[58]  M. Deleuil,et al.  New insights in the FUV into the activity of the Herbig Ae star HD 163296 , 2005 .

[59]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[60]  Geoffrey A. Blake,et al.  High-Resolution 4.7 Micron Keck/NIRSPEC Spectroscopy of the CO Emission from the Disks Surrounding Herbig Ae Stars , 2004 .

[61]  C. Clarke,et al.  Photoevaporation of protoplanetary discs - II. Evolutionary models and observable properties , 2006, astro-ph/0603254.

[62]  Dispersion in the lifetime and accretion rate of T Tauri discs , 2003, astro-ph/0303343.

[63]  R. Krotkov,et al.  ULTRAVIOLET PUMPING OF MOLECULAR VIBRATIONAL-STATES - THE CO INFRARED BANDS , 1980 .