Clin D'oeil on L1-embeddable Planar Graphs

In this note we present some properties of LI-embeddable planar graphs. We present a characterization of graphs isometrically embeddable into half-cubes. This result implies that every planar Li-graph G has a scale 2 embedding into a hypercube. Further, under some additional conditions we show that for a simple circuit C of a planar Li-graph G the subgraph H of G bounded by C is also Li-embeddable. In many important cases, the length of C is the dimension of the smallest cube in which H has a scale embedding. Using these facts we establish the LI-embeddability of a list of planar graphs.

[1]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[2]  Jean Pedersen,et al.  Geometry: the unity of theory and practice , 1983 .

[3]  Peter Winkler,et al.  Collapse of the Metric Hierarchy for Bipartite Graphs , 1986, Eur. J. Comb..

[4]  J. Krivine,et al.  Lois stables et espaces $L^p$ , 1967 .

[5]  Michel Deza,et al.  A Note on l1-rigid Planar Graphs , 1996, Eur. J. Comb..

[6]  Martin Kochol,et al.  Five Cycle Double Covers of Some Cubic Graphs , 1995, J. Comb. Theory, Ser. B.

[7]  Michel Deza,et al.  Hypermetrics in geometry of numbers , 1993, Combinatorial Optimization.

[8]  Monique Laurent,et al.  ℓ1-Rigid Graphs , 1994 .

[9]  Cemi,et al.  A Zoo of L 1 -embeddable Polytopal Graphs , 1996 .

[10]  Patrice Assouad Embeddability of Regular Polytopes and Honeycombs in Hypercubes , 1981 .

[11]  M. Laurent,et al.  Applications of cut polyhedra , 1992 .

[12]  Jerry Ray Dias Indacenoid Isomers of Semibuckminsterfullerene (Buckybowl) and Their Topological Characteristics , 1995, J. Chem. Inf. Comput. Sci..

[13]  H. Coxeter,et al.  The Geometric vein : the Coxeter Festschrift , 1981 .

[14]  Victor Chepoi,et al.  On Distances in Benzenoid Systems , 1996, J. Chem. Inf. Comput. Sci..

[15]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .

[16]  Victor Chepoi,et al.  The Wiener Index and the Szeged Index of Benzenoid Systems in Linear Time , 1997, J. Chem. Inf. Comput. Sci..

[17]  Michel Deza,et al.  Applications of cut polyhedra—II , 1994 .

[18]  Sergey V. Shpectorov,et al.  On Scale Embeddings of Graphs into Hypercubes , 1993, Eur. J. Comb..

[19]  Yihan Shao,et al.  Topology and Stability of Trivalent Polyhedral Clusters , 1994 .

[20]  P. Assouad,et al.  Espaces Métriques Plongeables Dans Un Hypercube: Aspects Combinatoires , 1980 .

[21]  M Deza,et al.  L 1 -rigid Graphs , 1994 .

[22]  M. Deza,et al.  Recognition of thel1-Graphs with ComplexityO(nm), orFootball in a Hypercube , 1996, Eur. J. Comb..

[23]  Sandi Klavzar,et al.  A METHOD FOR CALCULATING WIENER NUMBERS OF BENZENOID HYDROCARBONS , 1996 .

[24]  Van de M. L. J. Vel Theory of convex structures , 1993 .

[25]  Victor Chepoi,et al.  A Multifacility Location Problem on Median Spaces , 1996, Discret. Appl. Math..

[26]  Bojan Mohar,et al.  Labeling of Benzenoid Systems which Reflects the Vertex-Distance Relations , 1995, J. Chem. Inf. Comput. Sci..