Discrete-time modeling and control of a boost converter by means of a variational integrator and sliding modes

Abstract This work deals with the discrete-time modeling of a boost DC-to-DC power converter by means of a discrete Lagrangian formulation based on the midpoint rule integration method. Then in the basis of this model, a discrete-time sliding mode regulator is designed in order to force the boost circuit to track a DC-biased sinusoidal signal. Simulations and experimental tests are carried on where the great performance of the proposed methodology is verified.

[1]  H. Sira-Ramírez Differential geometric methods in variable-structure control , 1988 .

[2]  Mathieu Desbrun,et al.  Discrete geometric mechanics for variational time integrators , 2006, SIGGRAPH Courses.

[3]  Y. B. Shtessel,et al.  Boost and buck-boost power converters control via sliding modes using dynamic sliding manifold , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[4]  A. Isidori,et al.  Output regulation of nonlinear systems , 1990 .

[5]  R. Ortega Passivity-based control of Euler-Lagrange systems : mechanical, electrical and electromechanical applications , 1998 .

[6]  Wai-Kai Chen,et al.  A unified method for fast modelling of DC-DC switching converters , 1993 .

[7]  Alexander G. Loukianov,et al.  Discontinuous output regulation of the Pendubot , 2008 .

[8]  R. W. Ashton,et al.  The design of stabilizing controls for shipboard DC-to-DC buck choppers using feedback linearization techniques , 1998, PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196).

[9]  I. Barbi,et al.  Sliding mode controller for the boost inverter , 1996, V IEEE International Power Electronics Congress Technical Proceedings, CIEP 96.

[10]  D. Biel,et al.  TWO SLIDING MODE APPROACHES TO THE CONTROL OF A BOOST SYSTEM , 1999 .

[11]  Y. B. Shtessel,et al.  Boost and buck-boost power converters control via sliding modes using method of stable system centre , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[12]  Vadim I. Utkin,et al.  Sliding mode regulator design , 2004 .

[13]  Dorothée Normand-Cyrot,et al.  Issues on Nonlinear Digital Control , 2001, Eur. J. Control.

[14]  Josep M. Olm,et al.  Galerkin method and approximate tracking in a non-minimum phase bilinear system , 2006 .

[15]  Alexander G. Loukianov,et al.  On the Discrete-Time Modeling of a DC-to-DC Power Converter and Control Design with Discrete-Time Sliding Modes , 2013 .

[16]  Bernardino Castillo-Toledo,et al.  Nonlinear regulation of an underactuated system , 1997, Proceedings of International Conference on Robotics and Automation.

[17]  Woonki Na,et al.  Ripple current reduction using multi-dimensional sliding mode control for fuel cell DC to DC converter applications , 2011, 2011 IEEE Vehicle Power and Propulsion Conference.

[18]  R. W. Dunn,et al.  Sliding-mode control, dynamic assessment and practical implementation of a bidirectional buck/boost DC-to-DC converter , 2011, Proceedings of the 2011 14th European Conference on Power Electronics and Applications.

[19]  Jian Sun,et al.  Comparative Performance Evaluation of Current-Mode Control Schemes Adapted to Asymmetrically Driven Bridge-Type Pulsewidth Modulated DC-to-DC Converters , 2008, IEEE Transactions on Industrial Electronics.

[20]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[21]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[22]  George C. Verghese,et al.  Principles of Power Electronics , 2023 .

[23]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[24]  Alexander G. Loukianov,et al.  Discontinuous output regulation for a DC-to-AC boost converter , 2012, 2012 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE).

[25]  Stefano Di Gennaro,et al.  Hybrid Control of Induction Motors via Sampled Closed Representations , 2008, IEEE Transactions on Industrial Electronics.

[26]  Sarah K. Spurgeon,et al.  Sliding Mode Control , 1998 .

[27]  Jesus Linares Flores,et al.  Passivity-Based Controller and Online Algebraic Estimation of the Load Parameter of the DC-to-DC power converter Cuk Type , 2011, IEEE Latin America Transactions.

[28]  Michael V. Basin,et al.  Sliding mode controller design for linear systems with unmeasured states , 2010, 2010 11th International Workshop on Variable Structure Systems (VSS).

[29]  Daizhan Cheng,et al.  Theory and experimental results on output regulation for nonlinear systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[30]  Byungcho Choi,et al.  Average current mode control to improve current distributions in multi-module esonant dc-to-dc converters , 2011, 8th International Conference on Power Electronics - ECCE Asia.

[31]  Jorge Rivera,et al.  Super-Twisting Sliding Mode in Motion Control Systems , 2011 .

[32]  Hebertt Sira-Ramírez,et al.  DC‐to‐AC power conversion on a ‘boost’ converter , 2001 .

[33]  M. R. D. Al-Mothafar Small-signal modelling of current-programmed N-connected parallel-input/series-output bridge-based buck dc-dc converters , 2012, J. Frankl. Inst..

[34]  Jean Buisson,et al.  Modelling and Passivity Based Control of switched systems from bond graph formalism: Application to multicellular converters , 2008, J. Frankl. Inst..

[35]  A. Berthon,et al.  DC to DC converter with neural network control for on-board electrical energy management , 2004, The 4th International Power Electronics and Motion Control Conference, 2004. IPEMC 2004..

[36]  Salvatore Monaco,et al.  Advanced tools for nonlinear sampled-data systems' analysis and control , 2007, 2007 European Control Conference (ECC).

[37]  Astrom Computer Controlled Systems , 1990 .

[38]  Z. Salam,et al.  Implementation of Single Input Fuzzy Logic Controller for Boost DC to DC power converter , 2010, 2010 IEEE International Conference on Power and Energy.