Pseudomonas aeruginosa population structure revisited under environmental focus: impact of water quality and phage pressure.

Pseudomonas aeruginosa attracts research attention as a common opportunistic nosocomial pathogen causing severe health problems in humans. Nevertheless, its primary habitat is the natural environment. Here, we relate the genetic diversity of 381 environmental isolates from rivers in northern Germany to ecological factors such as river system, season of sampling and different levels of water quality. From representatives of 99 environmental clones, also in comparison with 91 clinical isolates, we determined motility phenotypes, virulence factors, biofilm formation, serotype and the resistance to seven environmental P.aeruginosa phages. The integration of genetic, ecological and phenotypic data showed (i) the presence of several extended clonal complexes (ecc) which are non-uniformly distributed across different water qualities, and (ii) a correlation of the hosts' serotype composition with susceptibility towards distinct groups of environmental phages. For at least one ecc (eccB), we assumed the ecophysiological differences on environmental water adaptation and phage resistance to be so distinct as to reinforce an environmentally driven cladogenic split from the remainder of P.aeruginosa. In summary, we conclude that the majority of the microevolutionary population dynamics of P.aeruginosa were shaped by the natural environment and not by the clinical habitat.

[1]  M. Tibayrenc,et al.  Genetic Diversity of Pseudomonas aeruginosa Strains Isolated from Ventilated Patients with Nosocomial Pneumonia, Cancer Patients with Bacteremia, and Environmental Water , 2001, Infection and Immunity.

[2]  T. Pitt,et al.  Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. , 2004, Journal of medical microbiology.

[3]  Samuel I. Miller,et al.  Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients , 2007, Molecular microbiology.

[4]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[5]  H. A. Orr,et al.  The genetic theory of adaptation: a brief history , 2005, Nature Reviews Genetics.

[6]  Christopher M Thomas,et al.  Mechanisms of, and Barriers to, Horizontal Gene Transfer between Bacteria , 2005, Nature Reviews Microbiology.

[7]  B. Lânyi Serological properties of Pseudomonas aeruginosa. I. Group-specific somatic antigens. , 1966, Acta microbiologica Academiae Scientiarum Hungaricae.

[8]  J. Young,et al.  Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes , 2004, Molecular ecology.

[9]  J. Euzéby List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. , 1997, International journal of systematic bacteriology.

[10]  John W. Taylor,et al.  Geographic Barriers Isolate Endemic Populations of Hyperthermophilic Archaea , 2003, Science.

[11]  K. Holsinger The neutral theory of molecular evolution , 2004 .

[12]  Alexis Criscuolo,et al.  Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. , 2010, The Journal of infectious diseases.

[13]  B. Yuval,et al.  Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. , 2008, Journal of insect physiology.

[14]  Alexander Sulakvelidze,et al.  Bacteriophages: Biology and Applications , 2007 .

[15]  R. Amann,et al.  The species concept for prokaryotes. , 2013, FEMS microbiology reviews.

[16]  D. Bigley,et al.  Distribution of Pseudomonas aeruginosa in a riverine ecosystem , 1983, Applied and environmental microbiology.

[17]  M. Rohde,et al.  Sequencing and Characterization of Pseudomonas aeruginosa phage JG004 , 2011, BMC Microbiology.

[18]  Bruno Pot,et al.  Pseudomonas aeruginosa Population Structure Revisited , 2009, PloS one.

[19]  N. Koedam,et al.  Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. , 2003, Canadian journal of microbiology.

[20]  R. Hancock,et al.  Swarming of Pseudomonas aeruginosa Is Controlled by a Broad Spectrum of Transcriptional Regulators, Including MetR , 2009, Journal of bacteriology.

[21]  C. Fraser,et al.  The Bacterial Species Challenge: Making Sense of Genetic and Ecological Diversity , 2009, Science.

[22]  D. Falush,et al.  Recombination and mutation during long-term gastric colonization by Helicobacter pylori: Estimates of clock rates, recombination size, and minimal age , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Weinbauer Ecology of prokaryotic viruses. , 2004, FEMS microbiology reviews.

[24]  T. Ohta Slightly Deleterious Mutant Substitutions in Evolution , 1973, Nature.

[25]  F. Lépine,et al.  Production of rhamnolipids by Pseudomonas aeruginosa , 2005, Applied Microbiology and Biotechnology.

[26]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  C. H. Drake,et al.  A STUDY OF THE INCIDENCE OF PSEUDOMONAS AERUGINOSA FROM VARIOUS NATURAL SOURCES , 1952, Journal of bacteriology.

[28]  G. Geesey,et al.  Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture , 1995, Applied and environmental microbiology.

[29]  R. Hancock,et al.  Outer membrane proteins of Pseudomonas aeruginosa serotype strains. , 1982, The Journal of infectious diseases.

[30]  W. Doolittle,et al.  On the origin of prokaryotic species. , 2009, Genome research.

[31]  H. Matsumoto,et al.  Survey of Heat-Stable, Major Somatic Antigens of Pseudomonas aeruginosa† , 1983 .

[32]  B. Tümmler,et al.  Sequence Diversity of Pseudomonas aeruginosa: Impact on Population Structure and Genome Evolution , 2000, Journal of bacteriology.

[33]  R. Colwell Polyphasic Taxonomy of the Genus Vibrio: Numerical Taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and Related Vibrio Species , 1970, Journal of bacteriology.

[34]  R. Schoental The Nature of the Antibacterial Agents Present in Pseudomonas pyocyanea Cultures , 1941 .

[35]  T. Hothorn,et al.  A Robust Procedure for Comparing Multiple Means under Heteroscedasticity in Unbalanced Designs , 2010, PloS one.

[36]  D. Frank,et al.  Effect of Pseudomonas aeruginosa elastase, alkaline protease, and exotoxin A on corneal proteinases and proteins. , 1993, Investigative ophthalmology & visual science.

[37]  B. Tümmler,et al.  Gradient of genomic diversity in the Pseudomonas aeruginosa chromosome , 1995, Molecular microbiology.

[38]  R. P. Ross,et al.  Bacteriophage and their lysins for elimination of infectious bacteria. , 2009, FEMS microbiology reviews.

[39]  D. M. Ward A natural species concept for prokaryotes. , 1998, Current opinion in microbiology.

[40]  D. Dykhuizen,et al.  Clonal divergence in Escherichia coli as a result of recombination, not mutation. , 1994, Science.

[41]  Y Comeau,et al.  Initiation of Biofilm Formation byPseudomonas aeruginosa 57RP Correlates with Emergence of Hyperpiliated and Highly Adherent Phenotypic Variants Deficient in Swimming, Swarming, and Twitching Motilities , 2001, Journal of bacteriology.

[42]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[43]  Pradeep K. Singh,et al.  Cystic Fibrosis Sputum Supports Growth and Cues Key Aspects of Pseudomonas aeruginosa Physiology , 2005, Journal of bacteriology.

[44]  Laura E. Green,et al.  The role of ecological theory in microbial ecology , 2007, Nature Reviews Microbiology.

[45]  D. Obreht,et al.  Isolation of Pseudomonas aeruginosa Specific Phages with Broad Activity Spectra , 2009, Current Microbiology.

[46]  M. Akçay,et al.  Prevalence of metallo-beta-lactamase among Pseudomonas aeruginosa and Acinetobacter baumannii isolated from burn wounds and in vitro activities of antibiotic combinations against these isolates. , 2005, Burns : journal of the International Society for Burn Injuries.

[47]  R. D. Stefano,et al.  Infections caused by Pseudomonas aeruginosa: Relatively frequent isolation of serogroup 12 from clinical specimens , 1985, European Journal of Epidemiology.

[48]  P. Flume,et al.  Update in cystic fibrosis 2009. , 2010, American journal of respiratory and critical care medicine.

[49]  N. Høiby,et al.  Characterization of paired mucoid/non-mucoid Pseudomonas aeruginosa isolates from Danish cystic fibrosis patients: antibiotic resistance, beta-lactamase activity and RiboPrinting. , 2001, The Journal of antimicrobial chemotherapy.

[50]  M. Lynch The frailty of adaptive hypotheses for the origins of organismal complexity , 2007, Proceedings of the National Academy of Sciences.

[51]  E. Verder,et al.  A Proposed Antigenic Schemia for the Identification of Strains of Pseudomonas Aeruginosa , 1961 .

[52]  R. Fridman,et al.  In vivo bacterial protease production during Pseudomonas aeruginosa corneal infection. , 1995, Investigative ophthalmology & visual science.

[53]  Anne-Brit Kolstø,et al.  Complete Sequence Analysis of Novel Plasmids from Emetic and Periodontal Bacillus cereus Isolates Reveals a Common Evolutionary History among the B. cereus-Group Plasmids, Including Bacillus anthracis pXO1 , 2006, Journal of bacteriology.

[54]  G. Volckaert,et al.  Survey of Pseudomonas aeruginosa and its phages: de novo peptide sequencing as a novel tool to assess the diversity of worldwide collected viruses. , 2009, Environmental microbiology.

[55]  J. Wimpenny,et al.  A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models , 1997 .

[56]  I. Fridovich,et al.  Mechanism of the antibiotic action pyocyanine , 1980, Journal of bacteriology.

[57]  M. Maiden Multilocus sequence typing of bacteria. , 2006, Annual review of microbiology.

[58]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[59]  A. Vanderkelen,et al.  Pseudomonas aeruginosa displays an epidemic population structure. , 2002, Environmental microbiology.

[60]  E. Rubinstein,et al.  Pseudomonas aeruginosa meningitis treated with an azlocillin combination , 2005, Infection.

[61]  Lawrence G. Wayne,et al.  International Committee on Systematic Bacteriology: Announcement of the Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics , 1988 .

[62]  O. Sandvik Serological comparison between strains of Pseudomonas aeruginosa from human and animal sources. , 2009, Acta pathologica et microbiologica Scandinavica.

[63]  J. Rozé,et al.  Contamination of a milk bank pasteuriser causing a Pseudomonas aeruginosa outbreak in a neonatal intensive care unit , 2003, Archives of Disease in Childhood: Fetal and Neonatal Edition.

[64]  A. Tripathi,et al.  Survival and chromate reducing ability of Pseudomonas aeruginosa in industrial effluents , 1999, Letters in applied microbiology.

[65]  A. Hauser,et al.  Relative Contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to Virulence in the Lung , 2004, Infection and Immunity.

[66]  J Mallet,et al.  A species definition for the modern synthesis. , 1995, Trends in ecology & evolution.

[67]  M. Lynch Streamlining and simplification of microbial genome architecture. , 2006, Annual review of microbiology.

[68]  T. Pitt,et al.  Multiresistant serotype O 12 Pseudomonas aeruginosa: evidence for a common strain in Europe , 1989, Epidemiology and Infection.

[69]  M. G. Lorenz,et al.  The potential for intraspecific horizontal gene exchange by natural genetic transformation: sexual isolation among genomovars of Pseudomonas stutzeri. , 2000, Microbiology.

[70]  R. Hancock,et al.  Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. , 2009, FEMS microbiology reviews.

[71]  A. Hauser,et al.  Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. , 2001, Microbiology.

[72]  B. Wretlind,et al.  Assessment of protease (elastase) as a Pseudomonas aeruginosa virulence factor in experimental mouse burn infection , 1979, Infection and immunity.

[73]  A. Sahin,et al.  Supplemental Table 1 , 2010 .

[74]  Pha Sneath,et al.  International code of nomenclature of bacteria (1990 revision). , 1992 .

[75]  Costerton Jw,et al.  Bacterial resistance to antibiotics: the role of biofilms. , 1991 .

[76]  E. Verder,et al.  A proposed antigenic schema for the identification of strains of Pseudomonas aeruginosa. , 1961, Journal of Infectious Diseases.

[77]  C. Ahlén,et al.  Identification of infectious Pseudomonas aeruginosa strains in an occupational saturation diving environment. , 1998, Occupational and environmental medicine.

[78]  K. Konstantinidis,et al.  Genomic insights that advance the species definition for prokaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[79]  F. Rojo,et al.  Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. , 1999, Environmental microbiology.

[80]  J. Huxley Evolution: The Modern Synthesis , 1943 .

[81]  G. Volckaert,et al.  Quality-Controlled Small-Scale Production of a Well-Defined Bacteriophage Cocktail for Use in Human Clinical Trials , 2009, PloS one.

[82]  N. Høiby,et al.  Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. , 2010, Microbiology.

[83]  P. de Vos,et al.  Polyphasic Taxonomy , a Consensus Approach to Bacterial Systematics , 1996 .

[84]  J. Musarrat,et al.  Characterization of a New Pseudomonas aeruginosa Strain NJ-15 as a Potential Biocontrol Agent , 2003, Current Microbiology.

[85]  F J Ayala,et al.  Tempo and mode in evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[86]  R. F. Smith,et al.  Epidemiological tracing of Pseudomonas aeruginosa: antibiogram and serotyping. , 1974, Applied microbiology.

[87]  G. Taylor,et al.  Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium , 1988, Infection and immunity.

[88]  J. Heesemann,et al.  Stage-specific adaptation of hypermutable Pseudomonas aeruginosa isolates during chronic pulmonary infection in patients with cystic fibrosis. , 2007, The Journal of infectious diseases.

[89]  J. Goldberg,et al.  The role of the CFTR in susceptibility to Pseudomonas aeruginosa infections in cystic fibrosis. , 2000, Trends in microbiology.

[90]  W. Ludwig,et al.  Notes on the characterization of prokaryote strains for taxonomic purposes. , 2010, International journal of systematic and evolutionary microbiology.

[91]  Qing Yang,et al.  Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[92]  W. Hanage,et al.  eBURST: Inferring Patterns of Evolutionary Descent among Clusters of Related Bacterial Genotypes from Multilocus Sequence Typing Data , 2004, Journal of bacteriology.

[93]  W. Doolittle,et al.  Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. , 2009, International journal of systematic and evolutionary microbiology.

[94]  P. Knežević,et al.  A colorimetric microtiter plate method for assessment of phage effect on Pseudomonas aeruginosa biofilm. , 2008, Journal of microbiological methods.

[95]  S. Suter The role of bacterial proteases in the pathogenesis of cystic fibrosis. , 1994, American journal of respiratory and critical care medicine.

[96]  E. Mayr,et al.  The objects of selection. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[97]  T. Hayashi,et al.  Identification of the lipopolysaccharide core region as the receptor site for a cytotoxin-converting phage, phi CTX, of Pseudomonas aeruginosa , 1994, Journal of bacteriology.

[98]  Chitkara Yk,et al.  Endogenous and exogenous infection with Pseudomonas aeruginosa in a burns unit. , 1981 .

[99]  C. Fraser,et al.  Recombination and the Nature of Bacterial Speciation , 2007, Science.

[100]  D. Hartl,et al.  Principles of population genetics , 1981 .

[101]  R. Kolter,et al.  Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili , 1998, Molecular microbiology.

[102]  F. Cohan,et al.  A Systematics for Discovering the Fundamental Units of Bacterial Diversity , 2007, Current Biology.

[103]  D. Jahn,et al.  Characterization of JG024, a pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions , 2010, BMC Microbiology.

[104]  T. Montie,et al.  Avirulence and altered physiological properties of cystic fibrosis strains of Pseudomonas aeruginosa , 1985, Infection and immunity.

[105]  A. Prince,et al.  Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. , 2005, American journal of respiratory and critical care medicine.

[106]  C. Fraser,et al.  The impact of homologous recombination on the generation of diversity in bacteria. , 2006, Journal of theoretical biology.

[107]  E. Koonin Darwinian evolution in the light of genomics , 2008, Nucleic acids research.

[108]  R. Kolter,et al.  Biofilm formation as microbial development. , 2000, Annual review of microbiology.

[109]  S. Eykyn,et al.  Hospital-acquired, native valve endocarditis caused by Pseudomonas aeruginosa. , 2002, The Journal of infection.

[110]  M. Thomassen,et al.  Flagella and motility alterations in Pseudomonas aeruginosa strains from patients with cystic fibrosis: relationship to patient clinical condition , 1985, Infection and immunity.

[111]  P. Gérôme,et al.  Study ofPseudomonas aeruginosa serotype O12 isolates with a common antibiotic susceptibility pattern , 1996, European Journal of Clinical Microbiology and Infectious Diseases.

[112]  Christophe Fraser,et al.  Modelling bacterial speciation , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[113]  F. Cohan Bacterial species and speciation. , 2001, Systematic biology.

[114]  H. Yamada,et al.  Production of antibody against Pseudomonas aeruginosa and its serological typing. , 1971, The Japanese journal of experimental medicine.

[115]  J. M. Smith,et al.  Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. , 2000, Genetics.

[116]  S. Kjelleberg,et al.  Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae , 2008, The ISME Journal.

[117]  R. Hancock,et al.  Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains , 1983, Infection and immunity.

[118]  M. Zucca,et al.  Phenotypic and genotypic characterization of Pseudomonas aeruginosa from cystic fibrosis patients , 2008, European Journal of Clinical Microbiology & Infectious Diseases.

[119]  Laurent Excoffier,et al.  Arlequin (version 3.0): An integrated software package for population genetics data analysis , 2005, Evolutionary bioinformatics online.

[120]  M. Galván,et al.  Pseudomonas aeruginosa as an indicator of health risk in water for human consumption. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[121]  D. M. Ward,et al.  Genomics, environmental genomics and the issue of microbial species , 2008, Heredity.

[122]  H. Devlin,et al.  New Immunotype Schema for Pseudomonas aeruginosa Based on Protective Antigens , 1969, Journal of bacteriology.

[123]  D. Hassett,et al.  Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase , 1992, Infection and immunity.

[124]  S. Roy,et al.  Effect of Mg(2+) ion in protein secretion by magnesium-resistant strains of Pseudomonas aeruginosa and Vibrio parahaemolyticus isolated from the coastal water of Haldia port. , 2000, FEMS microbiology letters.

[125]  Lucas J Stal,et al.  Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP , 2006, BMC Ecology.

[126]  I. Habs [Research on O-antigens of Pseudomonas aeruginosa]. , 1957, Zeitschrift fur Hygiene und Infektionskrankheiten; medizinische Mikrobiologie, Immunologie und Virologie.

[127]  F. Rojo,et al.  Structure of Pseudomonas aeruginosa Populations Analyzed by Single Nucleotide Polymorphism and Pulsed-Field Gel Electrophoresis Genotyping , 2004, Journal of bacteriology.

[128]  M. Bale,et al.  Identification of Pseudomonas aeruginosa by pyocyanin production on Tech agar , 1981, Journal of clinical microbiology.

[129]  S. Rapuano,et al.  Survival and growth of Pseudomonas aeruginosa in natural mineral water: a 5-year study. , 1999, International journal of food microbiology.

[130]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[131]  T. Dobzhansky Genetics and the Origin of Species , 1937 .

[132]  J. Majewski,et al.  Sexual isolation in bacteria. , 2001, FEMS microbiology letters.

[133]  Rachel J. Whitaker Allopatric origins of microbial species , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[134]  James T Staley,et al.  The bacterial species dilemma and the genomic–phylogenetic species concept , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[135]  N. Moran,et al.  The process of genome shrinkage in the obligate symbiont Buchnera aphidicola , 2001, Genome Biology.

[136]  J. Bull,et al.  Population and evolutionary dynamics of phage therapy , 2004, Nature Reviews Microbiology.

[137]  S. Cryz,et al.  Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase , 1980, Journal of bacteriology.

[138]  M. Roberts,et al.  The effect of DNA sequence divergence on sexual isolation in Bacillus. , 1993, Genetics.

[139]  D. Dubnau,et al.  DNA uptake in bacteria. , 1999, Annual review of microbiology.

[140]  P. Sneath,et al.  Approved lists of bacterial names. , 1980, The Medical journal of Australia.

[141]  D. Garnica,et al.  Comparison of virulence between clinical and environmental Pseudomonas aeruginosa isolates. , 2006, International microbiology : the official journal of the Spanish Society for Microbiology.

[142]  D. Krizanc,et al.  Ecology of Speciation in the Genus Bacillus , 2010, Applied and Environmental Microbiology.

[143]  C. Gerba,et al.  Risk assessment of Pseudomonas aeruginosa in water. , 2009, Reviews of environmental contamination and toxicology.

[144]  K. Poole,et al.  Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. , 2001, Journal of molecular microbiology and biotechnology.

[145]  J. A. Hobden,et al.  Pseudomonas aeruginosa Keratitis in Knockout Mice Deficient in Intercellular Adhesion Molecule 1 , 1999, Infection and Immunity.

[146]  R. Sander,et al.  Otitis externa: a practical guide to treatment and prevention. , 2001, American family physician.

[147]  Stefan Wuertz,et al.  Toward Automated Analysis of Biofilm Architecture: Bias Caused by Extraneous Confocal Laser Scanning Microscopy Images , 2007, Applied and Environmental Microbiology.

[148]  B. Spratt,et al.  Bacterial population genetics, evolution and epidemiology. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[149]  Howard Ochman,et al.  The consequences of genetic drift for bacterial genome complexity. , 2009, Genome research.

[150]  M. Favero,et al.  Bacteriological evaluation of an ultra-pure water-distilling system. , 1975, Applied microbiology.

[151]  F. Cohan What are bacterial species? , 2002, Annual review of microbiology.

[152]  E. Nevo,et al.  Adaptation and incipient sympatric speciation of Bacillus simplex under microclimatic contrast at "Evolution Canyons" I and II, Israel. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[153]  F. Cohan,et al.  The Origins of Ecological Diversity in Prokaryotes , 2008, Current Biology.

[154]  B. Spratt,et al.  Recombination and the population structures of bacterial pathogens. , 2001, Annual review of microbiology.

[155]  H. Grundmann,et al.  Development of a Multilocus Sequence Typing Scheme for the Opportunistic Pathogen Pseudomonas aeruginosa , 2004, Journal of Clinical Microbiology.

[156]  J. Costerton,et al.  Bacterial resistance to antibiotics: the role of biofilms. , 1991, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[157]  R E Sjogren,et al.  Bacterial survival in a dilute environment , 1981, Applied and environmental microbiology.

[158]  J. Elion,et al.  The absence of correlation between allozyme and rrn RFLP analysis indicates a high gene flow rate within human clinical Pseudomonas aeruginosa isolates. , 1993, FEMS microbiology letters.

[159]  M. Achtman Microevolution and epidemic spread of serogroup A Neisseria meningitidis--a review. , 1997, Gene.

[160]  M. Hentzer,et al.  Dynamics and Spatial Distribution of β-Lactamase Expression in Pseudomonas aeruginosa Biofilms , 2004, Antimicrobial Agents and Chemotherapy.

[161]  D. L. Le Couteur,et al.  Pseudomonas aeruginosa and the hyperlipidaemia of sepsis. , 2009, Pathology.

[162]  Tetsuya Matsumoto,et al.  Efficacy of Bacteriophage Therapy against Gut-Derived Sepsis Caused by Pseudomonas aeruginosa in Mice , 2006, Antimicrobial Agents and Chemotherapy.

[163]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[164]  B. Iglewski,et al.  Isolation and characterization of alkaline protease-deficient mutants of Pseudomonas aeruginosa in vitro and in a mouse eye model , 1984, Infection and immunity.

[165]  J. Fralick,et al.  Phage Therapy of Pseudomonas aeruginosa Infection in a Mouse Burn Wound Model , 2007, Antimicrobial Agents and Chemotherapy.

[166]  C. Pedrós-Alió,et al.  Dissolved Primary Production and the Strength of Phytoplankton– Bacterioplankton Coupling in Contrasting Marine Regions , 2002, Microbial Ecology.

[167]  D. M. Ward,et al.  Identifying the fundamental units of bacterial diversity: A paradigm shift to incorporate ecology into bacterial systematics , 2008, Proceedings of the National Academy of Sciences.

[168]  L. Eberl,et al.  Quorum sensing : a novel target for the treatment of biofilm infections. , 2003, BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy.

[169]  U. Romling,et al.  Proteome analysis reveals adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung environment , 2005, Proteomics.

[170]  A. Kornberg,et al.  Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[171]  Sarah P Preheim,et al.  Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[172]  B. Iglewski,et al.  The contribution of exoproducts to virulence of Pseudomonas aeruginosa. , 1986, Canadian journal of microbiology.

[173]  T. Beveridge,et al.  Pseudomonas aeruginosa PAO1 ceases to express serotype-specific lipopolysaccharide at 45 degrees C , 1996, Journal of bacteriology.

[174]  A. Vanderkelen,et al.  Direct detection and identification of Pseudomonas aeruginosa in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes, oprI and oprL , 1997, Journal of clinical microbiology.

[175]  W. Doolittle,et al.  Genomics and the bacterial species problem , 2006, Genome Biology.

[176]  A. Baltch,et al.  Pseudomonas aeruginosa : infections and treatment , 1994 .

[177]  M. Weinbauer,et al.  Assessing Niche Separation among Coexisting Limnohabitans Strains through Interactions with a Competitor, Viruses, and a Bacterivore , 2009, Applied and Environmental Microbiology.

[178]  J. Mattick,et al.  Differential Regulation of Twitching Motility and Elastase Production by Vfr in Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[179]  J. Claverys,et al.  Adaptation to the environment: Streptococcus pneumoniae, a paradigm for recombination‐mediated genetic plasticity? , 2000, Molecular microbiology.

[180]  L. F. Muscarella Contribution of Tap Water and Environmental Surfaces to Nosocomial Transmission of Antibiotic-Resistant Pseudomonas aeruginosa , 2004, Infection Control & Hospital Epidemiology.

[181]  N. Baker Role of exotoxin A and proteases of Pseudomonas aeruginosa in respiratory tract infections. , 1982, Canadian journal of microbiology.

[182]  Frederick M. Ausubel,et al.  Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation , 2002, Nature.

[183]  F. Taddei,et al.  Genetic barriers among bacteria. , 1996, Trends in microbiology.

[184]  K. Kogure,et al.  Isolation of Pseudomonas aeruginosa from Open Ocean and Comparison with Freshwater, Clinical, and Animal Isolates , 2007, Microbial Ecology.

[185]  B. Tümmler,et al.  The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[186]  J. Philiptschenko Variabilität und Variation , 1927 .

[187]  M. Favero,et al.  Pseudomonas aeruginosa: Growth in Distilled Water from Hospitals , 1971, Science.

[188]  Y. Chen,et al.  Presence of the exoU Gene of Pseudomonas aeruginosa Is Correlated with Cytotoxicity in MDCK Cells but Not with Colonization in BALB/c Mice , 2006, Journal of Clinical Microbiology.

[189]  N. Høiby,et al.  An epidemic spread of multiresistant Pseudomonas aeruginosa in a cystic fibrosis centre. , 1986, The Journal of antimicrobial chemotherapy.

[190]  A. Paccanaro,et al.  Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles , 2006, BMC Genomics.

[191]  S. Molin,et al.  Heterogeneity of Biofilms Formed by Nonmucoid Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis , 2005, Journal of Clinical Microbiology.

[192]  A. Chakrabarty,et al.  Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa , 1993, Applied and environmental microbiology.

[193]  S. Lory,et al.  Identification of DNA markers for a transmissible Pseudomonas aeruginosa cystic fibrosis strain. , 2005, American journal of respiratory cell and molecular biology.

[194]  C. Fraser,et al.  Sequences, sequence clusters and bacterial species , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[195]  L. Eberl,et al.  Multiple roles of Pseudomonas aeruginosa TBCF10839 PilY1 in motility, transport and infection , 2008, Molecular microbiology.

[196]  C. Suttle Marine viruses — major players in the global ecosystem , 2007, Nature Reviews Microbiology.

[197]  S. Baron,et al.  Antibiotic action of pyocyanin , 1981, Antimicrobial Agents and Chemotherapy.

[198]  B. Rehm,et al.  The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. , 2004, Microbiology.

[199]  W. Doolittle,et al.  Eradicating typological thinking in prokaryotic systematics and evolution. , 2009, Cold Spring Harbor symposia on quantitative biology.

[200]  M. Hurn,et al.  MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi , 2008, Proceedings of the National Academy of Sciences.

[201]  J. Costerton,et al.  The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.

[202]  R. Rosselló-Móra,et al.  Shifting the genomic gold standard for the prokaryotic species definition , 2009, Proceedings of the National Academy of Sciences.

[203]  C. Suttle Viruses in the sea , 2005, Nature.

[204]  Anastasia Papakonstantinopoulou,et al.  Transcriptome Analysis of Pseudomonas aeruginosa Growth: Comparison of Gene Expression in Planktonic Cultures and Developing and Mature Biofilms , 2005, Journal of bacteriology.

[205]  I. Sutherland,et al.  Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. , 1998, Microbiology.

[206]  J. da Silva,et al.  Comparison of the exoS Gene and Protein Expression in Soil and Clinical Isolates of Pseudomonas aeruginosa , 2001, Infection and Immunity.

[207]  B. Tress,et al.  Multiple doses of contrast medium from a single container: bacteriological studies. , 1994, Australasian radiology.

[208]  T. Pitt,et al.  Polyagglutinating and non-typable strains of Pseudomonas aeruginosa in cystic fibrosis. , 1986, Journal of medical microbiology.

[209]  D. Ohman,et al.  Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. , 1993, The Journal of biological chemistry.

[210]  U. Ozcelik,et al.  Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. , 2001, International journal of medical microbiology : IJMM.

[211]  L. Živković,et al.  Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. , 2006, Journal of bioscience and bioengineering.

[212]  Ludwig Triest,et al.  Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. , 2005, Environmental microbiology.

[213]  E. Greenberg,et al.  The influence of human respiratory epithelia on Pseudomonas aeruginosa gene expression. , 2007, Microbial pathogenesis.

[214]  K. Kogure,et al.  Multilocus Sequence Typing and Phylogenetic Analyses of Pseudomonas aeruginosa Isolates from the Ocean , 2008, Applied and Environmental Microbiology.

[215]  Thomas Bjarnsholt,et al.  Antibiotic resistance of bacterial biofilms. , 2010, International journal of antimicrobial agents.

[216]  J. Wiener-Kronish,et al.  Single-Nucleotide-Polymorphism Mapping of the Pseudomonas aeruginosa Type III Secretion Toxins for Development of a Diagnostic Multiplex PCR System , 2003, Journal of Clinical Microbiology.

[217]  D. M. Ward,et al.  The importance of physical isolation to microbial diversification. , 2004, FEMS microbiology ecology.

[218]  T. Pitt,et al.  The relationship between the O-antigenic lipopolysaccharides and serological specificity in strains of Pseudomonas aeruginosa of different O-serotypes. , 1973, Journal of general microbiology.

[219]  Maureen A. O’Malley,et al.  Prokaryotic evolution and the tree of life are two different things , 2009, Biology Direct.

[220]  Sylvain Moineau,et al.  Bacteriophage resistance mechanisms , 2010, Nature Reviews Microbiology.

[221]  Pan‐Chyr Yang,et al.  Persistence of a Multidrug-ResistantPseudomonas aeruginosa Clone in an Intensive Care Burn Unit , 1998, Journal of Clinical Microbiology.

[222]  Bernhard Haubold,et al.  LIAN 3.0: detecting linkage disequilibrium in multilocus data , 2000, Bioinform..

[223]  R. Colwell,et al.  Viable but nonculturable bacteria in drinking water , 1991, Applied and environmental microbiology.

[224]  A. Goudeau,et al.  Genetic features of Pseudomonas aeruginosa isolates from cystic fibrosis patients compared with those of isolates from other origins. , 2004, Journal of medical microbiology.

[225]  D. J. Funk,et al.  A conservative test of genetic drift in the endosymbiotic bacterium Buchnera: slightly deleterious mutations in the chaperonin groEL. , 2003, Genetics.

[226]  S. McColley,et al.  Type III Secretion Phenotypes of Pseudomonas aeruginosa Strains Change during Infection of Individuals with Cystic Fibrosis , 2004, Journal of Clinical Microbiology.

[227]  K. Lewis,et al.  Riddle of Biofilm Resistance , 2001, Antimicrobial Agents and Chemotherapy.

[228]  J. Elion,et al.  Genetic heterogeneity of Pseudomonas aeruginosa clinical isolates revealed by esterase electrophoretic polymorphism and restriction fragment length polymorphism of the ribosomal RNA gene region. , 1994, Journal of medical microbiology.

[229]  S. Gould The Structure of Evolutionary Theory , 2002 .

[230]  David M. Ward,et al.  A Natural View of Microbial Biodiversity within Hot Spring Cyanobacterial Mat Communities , 1998, Microbiology and Molecular Biology Reviews.

[231]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.

[232]  B. Tümmler,et al.  A major Pseudomonas aeruginosa clone common to patients and aquatic habitats , 1994, Applied and environmental microbiology.

[233]  M. Fujisawa,et al.  Complicated urinary tract infection caused by Pseudomonas aeruginosa in a single institution (1999–2003) , 2006, International journal of urology : official journal of the Japanese Urological Association.

[234]  Chanathip Pharino,et al.  Genotypic Diversity Within a Natural Coastal Bacterioplankton Population , 2005, Science.

[235]  W. Doolittle Microbial Evolution: Stalking the Wild Bacterial Species , 2008, Current Biology.

[236]  J. Rello,et al.  Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia. , 2003, The Journal of infectious diseases.

[237]  K. Tait,et al.  The interaction of phage and biofilms. , 2004, FEMS microbiology letters.

[238]  Martin Schuster,et al.  Pseudomonas aeruginosa Biofilms Exposed to Imipenem Exhibit Changes in Global Gene Expression and β-Lactamase and Alginate Production , 2004, Antimicrobial Agents and Chemotherapy.

[239]  C. Dowson,et al.  Commercial Mushrooms and Bean Sprouts Are a Source of Pseudomonas aeruginosa , 2005, Journal of Clinical Microbiology.

[240]  D. van Soolingen,et al.  Ecotypes of the Mycobacterium tuberculosis complex. , 2006, Journal of theoretical biology.

[241]  Patrick Forterre,et al.  The origin of viruses and their possible roles in major evolutionary transitions. , 2006, Virus research.

[242]  Christian Weinel,et al.  Population structure of Pseudomonas aeruginosa , 2007, Proceedings of the National Academy of Sciences.

[243]  D. M. Ward,et al.  Geographical isolation in hot spring cyanobacteria. , 2003, Environmental microbiology.

[244]  E. Mahenthiralingam,et al.  Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis , 1994, Infection and immunity.

[245]  K. Thiel,et al.  China approves first gene therapy , 2004, Nature Biotechnology.

[246]  J. Govan,et al.  Microbiology of cystic fibrosis lung infections: themes and issues. , 1993, Journal of the Royal Society of Medicine.

[247]  F. O'Gara,et al.  Genome Diversity of Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients and the Hospital Environment , 2004, Journal of Clinical Microbiology.

[248]  J. Mattick,et al.  Quorum Sensing Is Not Required for Twitching Motility in Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[249]  Hans-Peter Klenk,et al.  Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison , 2010, Standards in genomic sciences.

[250]  G. Fraser,et al.  Swarming motility. , 1999, Current opinion in microbiology.

[251]  T. Pitt,et al.  Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain , 2007, BMC Microbiology.

[252]  M. Schroth,et al.  Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. , 1974, Applied microbiology.

[253]  E. Mahenthiralingam,et al.  Nonopsonic phagocytosis of Pseudomonas aeruginosa by macrophages and polymorphonuclear leukocytes requires the presence of the bacterial flagellum , 1995, Infection and immunity.

[254]  M. Hasanuzzaman,et al.  Isolation, Identification, and Characterization of a Novel, Oil-Degrading Bacterium, Pseudomonas aeruginosa T1 , 2004, Current Microbiology.

[255]  D. Gevers,et al.  Resource Partitioning and Sympatric Differentiation Among Closely Related Bacterioplankton , 2008, Science.

[256]  N. Høiby,et al.  Does Centralized Treatment of Cystic Fibrosis Increase the Risk of Pseudomonas aeruginosa Infection? , 1986, Acta paediatrica Scandinavica.

[257]  Christophe Fraser,et al.  Neutral microepidemic evolution of bacterial pathogens. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[258]  D. M. Ward,et al.  Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species-like units linking microbial community composition, structure and function , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[259]  W. Johnson,et al.  Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques. , 1996, Microbiology.

[260]  M. Achtman,et al.  Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[261]  X. Didelot,et al.  A comparison of homologous recombination rates in bacteria and archaea , 2009, The ISME Journal.

[262]  D. Hassett,et al.  Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies , 2010, Expert opinion on therapeutic targets.

[263]  K. Kogure,et al.  Pseudomonas aeruginosa Isolated from Marine Environments in Tokyo Bay , 2003, Microbial Ecology.

[264]  Li Li,et al.  Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial , 2006, Genome Biology.

[265]  E. Greenberg,et al.  Identification, Timing, and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: a Transcriptome Analysis , 2003, Journal of bacteriology.

[266]  J. Sikorski Populations under microevolutionary scrutiny: what will we gain? , 2007, Archives of Microbiology.

[267]  M. Lynch,et al.  The Origins of Genome Complexity , 2003, Science.

[268]  R. Overbeek,et al.  The winds of (evolutionary) change: breathing new life into microbiology. , 1996, Journal of bacteriology.

[269]  B. Tümmler,et al.  Pseudomonas aeruginosa population biology in chronic obstructive pulmonary disease. , 2009, The Journal of infectious diseases.

[270]  U. Römling,et al.  Worldwide distribution of Pseudomonas aeruginosa clone C strains in the aquatic environment and cystic fibrosis patients. , 2005, Environmental microbiology.

[271]  Giovanna Morelli,et al.  Microevolution and history of the plague bacillus, Yersinia pestis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[272]  H. Kida,et al.  Isolation of Pseudomonas aeruginosa from Ushubetsu River water in Hokkaido, Japan. , 2000, The Japanese journal of veterinary research.

[273]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[274]  M. Kimura Evolutionary Rate at the Molecular Level , 1968, Nature.

[275]  J. Costerton,et al.  Microbial Biofilms , 2011 .

[276]  L. Excoffier,et al.  Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. , 1992, Genetics.

[277]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[278]  J. Costerton,et al.  Biofilms as complex differentiated communities. , 2002, Annual review of microbiology.

[279]  M. Busquets,et al.  Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils , 2000, Journal of applied microbiology.

[280]  Todd H. Oakley,et al.  The new biology: beyond the Modern Synthesis , 2007, Biology Direct.

[281]  T. Pitt,et al.  Auxotrophic variants of Pseudomonas aeruginosa are selected from prototrophic wild-type strains in respiratory infections in patients with cystic fibrosis , 1995, Journal of clinical microbiology.