Mapping with an Autonomous Car

In this paper, we present an approach towards mapping and safe navigation in real, large-scale environments with an autonomous car. The goal is to enable the car to autonomously navigate on roads while avoiding obstacles and while simultaneously learning an accurate three-dimensional model of the environment. To achieve these goals, we apply probabilistic state estimation techniques, network-based pose optimization, and a sensor-based traversability analysis approach. In order to achieve fast map learning, our system compresses the sensor data using multi-level surface maps. The overall systems runs on a modified Smart car equipped with different types of sensors. We present several results obtained from extensive experiments which illustrate the capabilities of our vehicle.

[1]  Clark F. Olson,et al.  Probabilistic self-localization for mobile robots , 2000, IEEE Trans. Robotics Autom..

[2]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[3]  Sebastian Thrun,et al.  A Multi-Resolution Pyramid for Outdoor Robot Terrain Perception , 2004, AAAI.

[4]  Takeo Kanade,et al.  Terrain mapping for a roving planetary explorer , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[5]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[6]  Alonzo Kelly,et al.  Robot planning in the space of feasible actions: two examples , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[7]  Christian Früh,et al.  An Automated Method for Large-Scale, Ground-Based City Model Acquisition , 2004, International Journal of Computer Vision.

[8]  Andrew Howard,et al.  Design and use paradigms for Gazebo, an open-source multi-robot simulator , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[9]  Joel W. Burdick,et al.  Alice: An information‐rich autonomous vehicle for high‐speed desert navigation , 2006, J. Field Robotics.

[10]  Sebastian Thrun Winning the DARPA grand challenge , 2006 .

[11]  Wolfram Burgard,et al.  Learning compact 3D models of indoor and outdoor environments with a mobile robot , 2003, Robotics Auton. Syst..

[12]  Wolfram Burgard,et al.  A system for volumetric robotic mapping of abandoned mines , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[13]  Takeo Kanade,et al.  Ambler: an autonomous rover for planetary exploration , 1989, Computer.

[14]  Cang Ye,et al.  A new terrain mapping method for mobile robots obstacle negotiation , 2003, SPIE Defense + Commercial Sensing.

[15]  Sebastian Thrun,et al.  Real-time acquisition of compact volumetric 3D maps with mobile robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[16]  Joachim Hertzberg,et al.  Automatic Reconstruction of Colored 3D Models , 2004 .

[17]  山田 祐,et al.  Open Dynamics Engine を用いたスノーボードロボットシミュレータの開発 , 2007 .

[18]  Hanumant Singh,et al.  Exactly Sparse Delayed-State Filters , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[19]  Ioannis Stamos,et al.  AVENUE: Automated site modeling in urban environments , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[20]  Sebastian Thrun,et al.  FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges , 2003, IJCAI 2003.

[21]  Wolfram Burgard,et al.  Using Hierarchical EM to Extract Planes from 3D Range Scans , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[22]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[23]  R. Simmons,et al.  Navigation regimes for off-road autonomy , 2005 .

[24]  Peter Kohlhepp,et al.  Schritthaltende 3D-Kartierung und Lokalisierung für mobile Inspektionsroboter , 2003, AMS.

[25]  Simon Lacroix,et al.  Autonomous Rover Navigation on Unknown Terrains: Functions and Integration , 2000, Int. J. Robotics Res..

[26]  Henrik I. Christensen,et al.  2D mapping of cluttered indoor environments by means of 3D perception , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[27]  Wolfram Burgard,et al.  Multi-Level Surface Maps for Outdoor Terrain Mapping and Loop Closing , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Hugh F. Durrant-Whyte,et al.  A high integrity IMU/GPS navigation loop for autonomous land vehicle applications , 1999, IEEE Trans. Robotics Autom..

[29]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[30]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[31]  Simon Lacroix,et al.  Autonomous Rover Navigation on Unknown Terrains Functions and Integration , 2000, ISER.

[32]  A. Nuchter,et al.  6D SLAM with approximate data association , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[33]  Wolfram Burgard,et al.  An Efficient Extension of Elevation Maps for Outdoor Terrain Mapping , 2005, FSR.

[34]  Ronald Parr,et al.  DP-SLAM: fast, robust simultaneous localization and mapping without predetermined landmarks , 2003, IJCAI 2003.

[35]  Wolfram Burgard,et al.  Using EM to Learn 3D Models of Indoor Environments with Mobile Robots , 2001, ICML.

[36]  E. Olson Fast iterative alignment of pose graphs with poor estimates , 2006 .

[37]  Hugh F. Durrant-Whyte,et al.  The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications , 2001, IEEE Trans. Robotics Autom..

[38]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[39]  Hans P. Moravec Robot spatial perception by stereoscopic vision and 3D evidence grids , 1996 .

[40]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[41]  Alonzo Kelly,et al.  Rough Terrain Autonomous Mobility—Part 1: A Theoretical Analysis of Requirements , 1998, Auton. Robots.

[42]  Wolfram Burgard,et al.  Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[43]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[44]  Wolfram Burgard,et al.  A real-time expectation-maximization algorithm for acquiring multiplanar maps of indoor environments with mobile robots , 2004, IEEE Transactions on Robotics and Automation.

[45]  Aaron C. Courville,et al.  Interacting Markov Random Fields for Simultaneous Terrain Modeling and Obstacle Detection , 2005, Robotics: Science and Systems.

[46]  Hanan Samet,et al.  Applications of spatial data structures , 1989 .

[47]  Sebastian Thrun,et al.  An Online Mapping Algorithm for Teams of Mobile Robots , 2000 .

[48]  Rafael Murrieta-Cid,et al.  3-D Modelling and Robot Localization from Visual and Range Data in Natural Scenes , 1999, ICVS.