Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In Vitro Biological Evaluation

[1]  A. Renno,et al.  Osteoconductive properties of two different bioactive glass forms (powder and fiber) combined with collagen , 2017 .

[2]  Hyoun‐Ee Kim,et al.  Biocompatibility and Biocorrosion of Hydroxyapatite-Coated Magnesium Plate: Animal Experiment , 2017, Materials.

[3]  W. Basirun,et al.  Bioglass® 45S5-based composites for bone tissue engineering and functional applications. , 2017, Journal of biomedical materials research. Part A.

[4]  C. Mortellaro,et al.  Sinus Augmentation with Biomimetic Nanostructured Matrix: Tomographic, Radiological, Histological and Histomorphometrical Results after 6 Months in Humans , 2017, Front. Physiol..

[5]  M. Custódio,et al.  Natural marine sponges for bone tissue engineering: The state of art and future perspectives. , 2017, Journal of biomedical materials research. Part B, Applied biomaterials.

[6]  H. Ehrlich,et al.  Spongin-Based Scaffolds from Hippospongia communis Demosponge as an Effective Support for Lipase Immobilization , 2017 .

[7]  M. Sandri,et al.  Biomimetic mineralization of recombinant collagen type I derived protein to obtain hybrid matrices for bone regeneration. , 2016, Journal of structural biology.

[8]  J. Silva,et al.  Biomedical devices: Design, prototyping, and manufacturing , 2016 .

[9]  David Gibbs,et al.  Bone Tissue Engineering , 2015, Current Molecular Biology Reports.

[10]  T. Miura,et al.  Formation of Hydroxyapatite Skeletal Materials from Hydrogel Matrices via Artificial Biomineralization. , 2015, The journal of physical chemistry. B.

[11]  Lourdes Cristina de Albuquerque Haach Corpos compósitos de poli(metacrilato de metila) com microfibra de biovidro e poros para reparo de defeitos ósseos , 2015 .

[12]  Carlos Alberto Fortulan,et al.  Cartilage reconstruction using self-anchoring implant with functional gradient , 2014 .

[13]  A. Lobo,et al.  Effect of ultrasound irradiation on the production of nHAp/MWCNT nanocomposites. , 2013, Materials science & engineering. C, Materials for biological applications.

[14]  A. Oryan,et al.  Effectiveness of synthetic hydroxyapatite versus Persian Gulf coral in an animal model of long bone defect reconstruction , 2013, Journal of Orthopaedics and Traumatology.

[15]  A. Mikos,et al.  Characterization of porous polymethylmethacrylate space maintainers for craniofacial reconstruction. , 2013, Journal of biomedical materials research. Part B, Applied biomaterials.

[16]  H. Kwak Aging, exercise, and extracellular matrix in the heart , 2013, Journal of exercise rehabilitation.

[17]  Amit Bandyopadhyay,et al.  Recent advances in bone tissue engineering scaffolds. , 2012, Trends in biotechnology.

[18]  J. Jansen,et al.  Bulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions. , 2012, Acta biomaterialia.

[19]  L. Bērziņa-Cimdiņa,et al.  Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy , 2012 .

[20]  J. Jansen,et al.  Calcium phosphate/poly(D,L-lactic-co-glycolic acid) composite bone substitute materials: evaluation of temporal degradation and bone ingrowth in a rat critical-sized cranial defect. , 2012, Clinical oral implants research.

[21]  N. Pavlos,et al.  In vitro Evaluation of Natural Marine Sponge Collagen as a Scaffold for Bone Tissue Engineering , 2011, International journal of biological sciences.

[22]  F. Berenbaum,et al.  Osteoarthritis: an update with relevance for clinical practice , 2011, The Lancet.

[23]  S. Warren,et al.  Cranial bone defects: current and future strategies. , 2010, Neurosurgical focus.

[24]  T. H. S. E. Sousa Projeto conceitual de implante bioativo com gradiente de estrutura funcional em poli (metacrilato de metila) e hidroxiapatita. Análises: in vitro e in vivo , 2009 .

[25]  Yingjun Wang,et al.  Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres. , 2008, Acta biomaterialia.

[26]  B. von Rechenberg,et al.  Biocompatibility Issues with Modern Implants in Bone - A Review for Clinical Orthopedics , 2008, The open orthopaedics journal.

[27]  X. Wang,et al.  Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate) Template , 2008, Nanoscale research letters.

[28]  Yi Zuo,et al.  Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. , 2007, Biomaterials.

[29]  Clemens A van Blitterswijk,et al.  Osteoinduction by biomaterials--physicochemical and structural influences. , 2006, Journal of biomedical materials research. Part A.

[30]  Helen H. Lu,et al.  Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. , 2005, Biomaterials.

[31]  J. Jansen,et al.  Biocompatibility and degradation of poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composites. , 2005, Journal of biomedical materials research. Part A.

[32]  E. Vuorio,et al.  Molecular biological evaluation of bioactive glass microspheres and adjunct bone morphogenetic protein 2 gene transfer in the enhancement of new bone formation. , 2005, Tissue engineering.

[33]  D. Howard,et al.  Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. , 2003, Tissue engineering.

[34]  Antonios G Mikos,et al.  In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. , 2003, Biomaterials.

[35]  Cato T Laurencin,et al.  Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. , 2003, Journal of biomedical materials research. Part A.

[36]  C. Cluzel,et al.  Evolution of collagens , 2002, The Anatomical record.

[37]  A. Kamali,et al.  Synergistic effect of strontium, bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects. , 2019, Journal of biomedical materials research. Part B, Applied biomaterials.

[38]  Louis C. Gerstenfeld,et al.  Fracture healing: mechanisms and interventions , 2015, Nature Reviews Rheumatology.

[39]  Y. Bayon,et al.  marine drugs , 2014 .

[40]  Cato T Laurencin,et al.  Bone tissue engineering: recent advances and challenges. , 2012, Critical reviews in biomedical engineering.

[41]  Yonghong Liu,et al.  Nucleosides from the Marine Sponge Haliclona sp. , 2009, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[42]  Josef Kellermann,et al.  Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. , 2002, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.