Towards data warehouse design

This paper focuses on data warehouse modelling. The conceptual model we defined, is based on object concepts extended with specific concepts like generic classes, temporal classes and archive classes. The temporal classes are used to store the detailed evolutions and the archive classes store the summarised data evolutions. We also provide a flexible concept allowing the administrator to define historised parts and non-historised parts into the warehouse schema. Moreover, we introduce constraints which configure the data warehouse behaviour and these various parts. To validate our propositions, we describe a prototype dedicated to the data warehouse design.

[1]  Jennifer Widom,et al.  The WHIPS prototype for data warehouse creation and maintenance , 1997, SIGMOD '97.

[2]  Inderpal Singh Mumick,et al.  The Stanford Data Warehousing Project , 1995 .

[3]  Jennifer Widom,et al.  Research problems in data warehousing , 1995, CIKM '95.

[4]  W. H. Inmon,et al.  Building the data warehouse (2nd ed.) , 1996 .

[5]  Jennifer Widom,et al.  Maintenance of Materialized Views: Problems, Techniques, and Applications , 1999, IEEE Data Eng. Bull..

[6]  Jennifer Widom,et al.  Maintaining Temporal Views over Non-Temporal Information Sources for Data Warehousing , 1998, EDBT.

[7]  Sunita Sarawagi,et al.  Modeling multidimensional databases , 1997, Proceedings 13th International Conference on Data Engineering.

[8]  Olivier Teste,et al.  Construction graphique d'entrepôts et de magasins de données , 1999, INFORSID.

[9]  Gultekin Özsoyoglu,et al.  Temporal and Real-Time Databases: A Survey , 1995, IEEE Trans. Knowl. Data Eng..

[10]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[11]  José Samos,et al.  Database Architecture for Data Warehousing: An Evolutionary Approach , 1998, DEXA.

[12]  Jennifer Widom,et al.  View maintenance in a warehousing environment , 1995, SIGMOD '95.

[13]  Hector Garcia-Molina,et al.  Efficient Snapshot Differential Algorithms for Data Warehousing , 1996, VLDB.

[14]  Marie-Christine Fauvet,et al.  Handling temporal grouping and pattern-matching queries in a temporal object model , 1998, CIKM '98.

[15]  Hector Garcia-Molina,et al.  Shrinking the warehouse update Window , 1999, SIGMOD '99.

[16]  Michel E. Adiba STORM: structural and temporal object-oriented multimedia database system , 1995, Proceedings. International Workshop on Multi-Media Database Management Systems.

[17]  Umeshwar Dayal,et al.  The HiPAC project: combining active databases and timing constraints , 1988, SGMD.

[18]  Franck Ravat,et al.  Conception de systèmes d'information multimédia répartie: application au milieu hospitalier , 1997, INFORSID.

[19]  Nam Huyn,et al.  Multiple-View Self-Maintenance in Data Warehousing Environments , 1997, VLDB.

[20]  Duane Szafron,et al.  Modeling temporal primitives: back to basics , 1997, CIKM '97.

[21]  Surajit Chaudhuri,et al.  An overview of data warehousing and OLAP technology , 1997, SGMD.

[22]  Sushil Jajodia,et al.  Temporal Database Bibliography Update , 1997, Temporal Databases, Dagstuhl.

[23]  Laks V. S. Lakshmanan,et al.  A Foundation for Multi-dimensional Databases , 1997, VLDB.

[24]  Stephen R. Gardner Building the data warehouse , 1998, CACM.

[25]  Jian Yang,et al.  Algorithms for Materialized View Design in Data Warehousing Environment , 1997, VLDB.

[26]  Anne Lapujade Contraints, Rules and Modelisation in a Meta-CASE Tool , 1995, SEKE.

[27]  Timos K. Sellis,et al.  Data Warehouse Schema and Instance Design , 1998, ER.

[28]  Wojciech Cellary,et al.  Consistency of versions in objects-oriented databases , 1990, VLDB 1990.

[29]  Dallan Quass,et al.  Maintenance Expressions for Views with Aggregation , 1996, VIEWS.