FSI Simulation of two back-to-back wind turbines in atmospheric boundary layer flow

Abstract The paper presents aerodynamic and fluid–structure interaction (FSI) simulations of two back-to-back 5 MW horizontal-axis wind turbines (HAWTs) at full scale and with full geometrical complexity operating in a stably-stratified atmospheric boundary layer (ABL) flow. The numerical formulation for stratified incompressible flows is based on the ALE-VMS methodology, and is coupled to a Kirchhoff–Love thin-shell formulation employed to model the wind-turbine structure. A multi-domain method (MDM) is adopted for computational efficiency. In the simulations presented the wind turbines are positioned one behind the other at a distance of four rotor diameters, which results in a noticeable power production loss for the downstream turbine due to the wake velocity deficit of the upstream turbine. The importance of including FSI coupling in the modeling to better predict the unsteady aerodynamic loads acting on the wind-turbine blades is also highlighted.

[1]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[2]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[3]  Tayfun E. Tezduyar,et al.  Special methods for aerodynamic-moment calculations from parachute FSI modeling , 2015 .

[4]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[5]  Tayfun Tezduyar,et al.  Methods for parallel computation of complex flow problems , 1999, Parallel Comput..

[6]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012 .

[7]  Kenji Takizawa,et al.  Computational thermo-fluid analysis of a disk brake , 2016 .

[8]  Tayfun E. Tezduyar,et al.  FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes , 2014 .

[9]  Hitoshi Hattori,et al.  Computational analysis of flow-driven string dynamics in turbomachinery , 2017 .

[10]  Kenji Takizawa,et al.  Computer modeling techniques for flapping-wing aerodynamics of a locust , 2013 .

[11]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[12]  Yuri Bazilevs,et al.  Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS , 2012 .

[13]  Annette Westerhellweg,et al.  Wake Measurements at alpha ventus – Dependency on Stability and Turbulence Intensity , 2014 .

[14]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[15]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[16]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[17]  T. Tezduyar,et al.  Space–time computation techniques with continuous representation in time (ST-C) , 2014 .

[18]  Tayfun E. Tezduyar,et al.  FSI modeling of the Orion spacecraft drogue parachutes , 2015 .

[19]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a parachute crossing the far wake of an aircraft , 2001 .

[20]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[21]  Kenji Takizawa,et al.  Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping , 2015 .

[22]  Tayfun E. Tezduyar,et al.  SPACE–TIME VMS METHODS FOR MODELING OF INCOMPRESSIBLE FLOWS AT HIGH REYNOLDS NUMBERS , 2013 .

[23]  F. Porté-Agel,et al.  Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study , 2012 .

[24]  Jason Jonkman,et al.  Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loading: Preprint , 2012 .

[25]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[26]  Yuri Bazilevs,et al.  Large-eddy simulation with near-wall modeling using weakly enforced no-slip boundary conditions , 2015 .

[27]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[28]  Kiran Bhaganagar,et al.  Implications of Stably Stratified Atmospheric Boundary Layer Turbulence on the Near-Wake Structure of Wind Turbines , 2014 .

[29]  Sutanu Sarkar,et al.  Direct and large-eddy simulations of internal tide generation at a near-critical slope , 2011, Journal of Fluid Mechanics.

[30]  Yuri Bazilevs,et al.  New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods , 2015 .

[31]  Kenji Takizawa,et al.  FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta , 2014 .

[32]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[33]  Kenji Takizawa,et al.  Computational engineering analysis with the new-generation space–time methods , 2014 .

[34]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[35]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[36]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[37]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[38]  Yuri Bazilevs,et al.  CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID–STRUCTURE INTERACTION , 2013 .

[39]  F. Porté-Agel,et al.  Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer , 2011 .

[40]  Tayfun E. Tezduyar,et al.  Multiscale space-time methods for thermo-fluid analysis of a ground vehicle and its tires , 2015 .

[41]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[42]  A. Korobenko,et al.  STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES , 2013 .

[43]  Tayfun E. Tezduyar,et al.  Shear-Slip Mesh Update in 3D Computation of Complex Flow Problems with Rotating Mechanical Components , 2001 .

[44]  Kenji Takizawa,et al.  ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling , 2014 .

[45]  Tayfun E. Tezduyar,et al.  The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft , 2001 .

[46]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[47]  Marek Behr,et al.  The Shear-Slip Mesh Update Method , 1999 .

[48]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[49]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[50]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[51]  Shanying Zhang,et al.  A Wind-Tunnel Simulation of the Wake of a Large Wind Turbine in a Weakly Unstable Boundary Layer , 2015, Boundary-Layer Meteorology.

[52]  Tayfun E. Tezduyar,et al.  Multi-domain parallel computation of wake flows , 1999 .

[53]  Kenji Takizawa,et al.  Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent , 2012, Computational Mechanics.

[54]  Jason Jonkman,et al.  FAST User's Guide , 2005 .

[55]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[56]  Frederica Darema,et al.  Dynamic Data Driven Applications Systems: A New Paradigm for Application Simulations and Measurements , 2004, International Conference on Computational Science.

[57]  Hitoshi Hattori,et al.  Space–time VMS method for flow computations with slip interfaces (ST-SI) , 2015 .

[58]  Gunner Chr. Larsen,et al.  Dependence of offshore wind turbine fatigue loads on atmospheric stratification , 2014 .

[59]  A. Korobenko,et al.  Novel structural modeling and mesh moving techniques for advanced fluid–structure interaction simulation of wind turbines , 2015 .

[60]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[61]  A. Korobenko,et al.  ALE–VMS formulation for stratified turbulent incompressible flows with applications , 2015 .

[62]  Tayfun E. Tezduyar,et al.  Stabilization Parameters in SUPG and PSPG Formulations , 2003 .

[63]  A. Korobenko,et al.  FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration , 2016 .

[64]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[65]  Tayfun E. Tezduyar,et al.  Space–time fluid mechanics computation of heart valve models , 2014 .

[66]  Tayfun E. Tezduyar,et al.  Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms , 2013 .

[67]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[68]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[69]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[70]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[71]  Tayfun E. Tezduyar,et al.  Space–Time method for flow computations with slip interfaces and topology changes (ST-SI-TC) , 2016 .

[72]  Tayfun E. Tezduyar,et al.  Ram-air parachute structural and fluid mechanics computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2016 .

[73]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[74]  A. Korobenko,et al.  Aerodynamic Simulation of Vertical-Axis Wind Turbines , 2014 .

[75]  E. S. Politis,et al.  Flow and wakes in large wind farms: Final report for UpWind WP8 , 2011 .

[76]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[77]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[78]  A. Korobenko,et al.  Fluid–Structure Interaction Modeling for Fatigue-Damage Prediction in Full-Scale Wind-Turbine Blades , 2016 .

[79]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[80]  Julie K. Lundquist,et al.  Atmospheric Stability Impacts on Power Curves of Tall Wind Turbines - An Analysis of a West Coast North American Wind Farm , 2010 .

[81]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[82]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[83]  Tayfun E. Tezduyar,et al.  Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle , 2012 .

[84]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[85]  Tayfun E. Tezduyar,et al.  Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust , 2012 .

[86]  Hitoshi Hattori,et al.  Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2017 .

[87]  Yuri Bazilevs,et al.  Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods , 2014 .

[88]  Xiaowei Deng,et al.  Fluid–Structure Interaction Modeling of Vertical-Axis Wind Turbines , 2014 .

[89]  Kenji Takizawa,et al.  Space–time interface-tracking with topology change (ST-TC) , 2014 .

[90]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[91]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[92]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[93]  Kenji Takizawa,et al.  Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity , 2013 .

[94]  Yuri Bazilevs,et al.  Free-Surface Flow and Fluid-Object Interaction Modeling With Emphasis on Ship Hydrodynamics , 2012 .

[95]  Fernando Porté-Agel,et al.  Volumetric Lidar Scanning of Wind Turbine Wakes under Convective and Neutral Atmospheric Stability Regimes , 2014 .

[96]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .

[97]  A. Korobenko,et al.  A new variational multiscale formulation for stratified incompressible turbulent flows , 2017 .

[98]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[99]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[100]  Tayfun E. Tezduyar,et al.  Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods , 2017 .

[101]  Sutanu Sarkar,et al.  Tidal flow over topography: effect of excursion number on wave energetics and turbulence , 2014, Journal of Fluid Mechanics.

[102]  Tayfun E. Tezduyar,et al.  Space–time VMS computation of wind-turbine rotor and tower aerodynamics , 2014 .

[103]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .