DT-MIL: Deformable Transformer for Multi-instance Learning on Histopathological Image

[1]  Linda G. Shapiro,et al.  Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images , 2018, MICCAI.

[2]  Marco Loog,et al.  Multiple instance learning with bag dissimilarities , 2013, Pattern Recognit..

[3]  Wendy S. Garrett,et al.  Cancer and the microbiota , 2015, Science.

[4]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[5]  Lin Yang,et al.  Loss-Based Attention for Deep Multiple Instance Learning , 2020, AAAI.

[6]  Wenyu Liu,et al.  Revisiting multiple instance neural networks , 2016, Pattern Recognit..

[7]  Melih Kandemir,et al.  Computer-aided diagnosis from weak supervision: A benchmarking study , 2015, Comput. Medical Imaging Graph..

[8]  Stephen M. Moore,et al.  The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository , 2013, Journal of Digital Imaging.

[9]  Brendan J. Frey,et al.  Classifying and segmenting microscopy images with deep multiple instance learning , 2015, Bioinform..

[10]  Anne L. Martel,et al.  Deep neural network models for computational histopathology: A survey , 2019, Medical Image Anal..

[11]  Thomas J. Fuchs,et al.  Clinical-grade computational pathology using weakly supervised deep learning on whole slide images , 2019, Nature Medicine.

[12]  Nicolas Usunier,et al.  End-to-End Object Detection with Transformers , 2020, ECCV.

[13]  Ruoyu Li,et al.  Graph CNN for Survival Analysis on Whole Slide Pathological Images , 2018, MICCAI.

[14]  Junzhou Huang,et al.  Deep Multi-instance Learning for Survival Prediction from Whole Slide Images , 2019, MICCAI.

[15]  Tang,et al.  Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer , 2020, Theranostics.

[16]  Jaume Amores,et al.  Multiple instance classification: Review, taxonomy and comparative study , 2013, Artif. Intell..

[17]  Pheng-Ann Heng,et al.  CIA-Net: Robust Nuclei Instance Segmentation with Contour-aware Information Aggregation , 2019, IPMI.

[18]  Jakob Nikolas Kather,et al.  Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer , 2019, Nature Medicine.