Hybrid RANS/LES modelling of OGV/prediffuser flow

In the gas turbine engine, the OGV/prediffuser combination is key to achieve a good design for combustor external aerodynamics. Since the flow includes 3D turbulent wakes and boundary layers in adverse pressure gradients with the possibility of flow separation, the OGV/prediffuser combination offers significant turbulence modelling challenges for CFD. In order to understand the optimum approach for modelling turbulence in this important sub-component of compressor/combustor interaction, a comparison is reported in this thesis with available experimental data for both a conventional and an advanced OGV/prediffuser combination using (i) both high Re and low Re RANS CFD, (ii) LES CFD, and (iii) hybrid RANS/LES CFD. In the hybrid RANS/LES CFD, a new method based on the use of an Algebraic Stress Model and a modified Recycling and Rescaling method has been developed to generate a spatially and temporally correlated unsteady velocity field for the LES inlet conditions from the time-averaged RANS solution at OGV exit. The results show that: 1)Both high Re and low Re RANS solutions show good agreement with the experimental data for the OGV wake prediction, but high Re RANS provides better predictions of overall pressure loss and is certainly more cost effective considering computing costs. 2) The LES solution shows partial flow separation of the OGV suction side boundary layer prediction which was not noted in the experiment. This is probably caused by the presence of relaminarisation and subsequent transition of the suction side OGV boundary layer. This places high demands on the LES near wall mesh required, as well as providing an extreme challenge for the LES sub grid scale model. 3) The Hybrid RANS/LES approach is able to provide a good balance of predictive capability, matching RANS predictions on global performance (pressure rise/loss) and improving the prediction of velocity distribution at prediffuser exit, and it thus offers an optimum approach for OGV/prediffuser flow simulation considering both accuracy and cost.

[1]  P. Spalart Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach , 1997 .

[2]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[3]  A. G. Barker,et al.  Influence of Compressor Exit Conditions on Combustor Annular Diffusers, Part 1: Diffuser Performance , 2001 .

[4]  G. Medic,et al.  Integrated RANS/LES Computations of an Entire Gas Turbine Jet Engine , 2007 .

[5]  Paul Batten,et al.  LNS - An approach towards embedded LES , 2002 .

[6]  A. Sadiki,et al.  A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations , 2003 .

[7]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[8]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[9]  Charles G. Speziale Computing non-equilibrium turbulent flows with time-dependent rans and vles , 1997 .

[10]  Horia C. Flitan,et al.  AIAA 2000-0742 Effects of Blade Count on Boundary Layer Development in a Low-Pressure Turbine , 2000 .

[11]  H. Mongia Recent Advances in the Development of Combustor Design Tools , 2003 .

[12]  D. Wilcox Turbulence modeling for CFD , 1993 .

[13]  Parviz Moin,et al.  Method for Generating Equilibrium Swirling Inflow Conditions , 1998 .

[14]  Parviz Moin,et al.  Outflow Conditions for Integrated Large Eddy Simulation/Reynolds-Averaged Navier-Stokes Simulations , 2005 .

[15]  James J. McGuirk,et al.  Influence of Nozzle Modelling in LES of Turbulent , 2005 .

[16]  N. Georgiadis,et al.  Hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulations of Supersonic Turbulent Mixing , 2003 .

[17]  Gavin Tabor,et al.  Inlet conditions for large eddy simulation: A review , 2010 .

[18]  Johannes Janicka,et al.  Flow Field and Structure of Swirl Stabilized Non-Premixed Natural Gas Flames at Elevated Pressure , 2004 .

[19]  Parviz Moin,et al.  Large-Eddy Simulation of Realistic Gas Turbine Combustors , 2004 .

[20]  A. Duncan Walker,et al.  Enhanced External Aerodynamic Performance of a Generic Combustor Using An Integrated OGV/Prediffuser Design Technique , 2007 .

[21]  W. Jones,et al.  The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence , 1973 .

[22]  Thomas A. Zang Numerical simulation of the dynamics of turbulent boundary layers: perspectives of a transition simulator , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[23]  B. Launder,et al.  Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc , 1974 .

[24]  J. Fröhlich,et al.  LES WITH DOWNSTREAM RANS FOR FLOW OVER PERIODIC HILLS AND A MODEL COMBUSTOR FLOW , 2022 .

[25]  P. Spalart Direct simulation of a turbulent boundary layer up to Rθ = 1410 , 1988, Journal of Fluid Mechanics.

[26]  S. Stevens,et al.  Performance of Annular Combustor-Dump Diffusers , 1974 .

[27]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[28]  Jean-Paul Bonnet,et al.  Generation of Three-Dimensional Turbulent Inlet Conditions for Large-Eddy Simulation , 2004 .

[29]  Wei Shyy,et al.  A numerical study of annular dump diffuser flows , 1985 .

[30]  T. Coakley,et al.  Turbulence Modeling Validation, Testing, and Development , 1997 .

[31]  J. Hinze,et al.  Turbulence: An Introduction to Its Mechanism and Theory , 1959 .

[32]  Hassan Hassan,et al.  Hybrid Large-Eddy / Reynolds-Averaged Navier-Stokes Simulation of Shock-Separated Flows , 2004 .

[33]  Pierre Sagaut,et al.  Zonal multi‐domain RANS/LES simulations of turbulent flows , 2002 .

[34]  W. Jones,et al.  The prediction of laminarization with a two-equation model of turbulence , 1972 .

[35]  M. H. Baba-Ahmadi,et al.  Inlet conditions for LES using mapping and feedback control , 2009 .

[36]  Philippe R. Spalart,et al.  Numerical study of sink-flow boundary layers , 1986, Journal of Fluid Mechanics.

[37]  Parviz Moin,et al.  Large-Eddy Simulation Inflow Conditions for Coupling with Reynolds-Averaged Flow Solvers , 2004 .

[38]  P. Moin,et al.  Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion , 2004, Journal of Fluid Mechanics.

[39]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[40]  A. N. Kolmogorov Equations of turbulent motion in an incompressible fluid , 1941 .

[41]  Juan J. Alonso,et al.  Development and Validation of a Massively Parallel Flow Solver for Turbomachinery Flows , 2001 .

[42]  P. Spalart,et al.  A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities , 2006 .

[43]  S. P. Harasgama,et al.  The influence of blade wakes on the performance of combustor shortened prediffusers , 1984 .

[44]  R. Cummings,et al.  Detached-eddy simulation with compressibility corrections applied to a supersonic axisymmetric base flow , 2002 .

[45]  W. Press Numerical recipes in Fortran 77 : the art of scientific computing : volume 1 of fortran numerical recipes , 1996 .

[46]  U. Piomelli,et al.  Wall-layer models for large-eddy simulations , 2008 .

[47]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[48]  Hassan Hassan,et al.  Validation of a hybrid Reynolds-averaged/large-eddy simulation method for simulating cavity flameholder configurations , 2001 .

[49]  U. Schumann Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli , 1975 .

[50]  T. Lund,et al.  Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations , 1998 .

[51]  Sukumar Chakravarthy,et al.  Sub-grid turbulence modeling for unsteady flow with acoustic resonance , 2000 .

[52]  E. R. V. Driest On Turbulent Flow Near a Wall , 1956 .

[53]  J. Fröhlich,et al.  Hybrid LES/RANS methods for the simulation of turbulent flows , 2008 .

[54]  Brian Launder,et al.  On the Calculation of Horizontal, Turbulent, Free Shear Flows Under Gravitational Influence , 1976 .

[55]  Dean R. Chapman,et al.  Computational Aerodynamics Development and Outlook , 1979 .

[56]  Sukumar Chakravarthy,et al.  Interfacing Statistical Turbulence Closures with Large-Eddy Simulation , 2004 .

[57]  S. J. Stevens,et al.  The Influence of Inlet Conditions on the Performance of Annular Diffusers , 1980 .

[58]  Pierre Sagaut,et al.  Multiscale And Multiresolution Approaches In Turbulence , 2006 .

[60]  O. Reynolds On the dynamical theory of incompressible viscous fluids and the determination of the criterion , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[61]  F. Hamba A Hybrid RANS/LES Simulation of Turbulent Channel Flow , 2003 .

[62]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[63]  Juan J. Alonso,et al.  Towards Multi-Component Analysis of Gas Turbines by CFD: Integration of RANS and LES Flow Solvers , 2003 .

[64]  Won-Wook Kim,et al.  Large-Eddy Simulation Needs for Gas Turbine Combustor Design , 2004 .

[65]  Hassan Hassan,et al.  Hybrid LES/RANS simulation of a shock wave/boundary layer interaction , 2002 .

[66]  James J. McGuirk,et al.  An Approach to Improve High Frequency Noise Prediction in LES of Jets , 2006 .

[67]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[68]  Elias Balaras,et al.  A priori and a posteriori tests of inflow conditions for large-eddy simulation , 2004 .

[69]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[70]  Jiri Blazek,et al.  Computational Fluid Dynamics: Principles and Applications , 2001 .

[71]  Thierry Poinsot,et al.  Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber , 2007 .

[72]  Juan J. Alonso,et al.  A framework for coupling Reynolds-averaged with large-eddy simulations for gas turbine applications , 2005 .

[73]  Philippe R. Spalart,et al.  Detached-Eddy Simulations Past a Circular Cylinder , 2000 .

[74]  G. Page,et al.  Prediction of Lobed Mixer Vortical Structures with a k-≤ Turbulence Model , 2003 .

[75]  Gary J. Page,et al.  Numerical predictions of turbulent underexpanded sonic jets using a pressure-based methodology , 2001 .

[76]  Walter Tollmien,et al.  Über ein neues Formelsystem für die ausgebildete Turbulenz , 1961 .

[77]  Nikolaus A. Adams,et al.  Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique , 2003 .

[78]  W. C. Reynolds,et al.  The potential and limitations of direct and large eddy simulations , 1990 .

[79]  A. Klein,et al.  Characteristics of combustor diffusers , 1995 .

[80]  W. Tollmien,et al.  Bericht über Untersuchungen zur ausgebildeten Turbulenz , 1961 .

[81]  Y. Dubief,et al.  On coherent-vortex identification in turbulence , 2000 .

[82]  Hassan Hassan,et al.  Blending Functions in Hybrid Large-Eddy/Reynolds-Averaged Navier-Stokes Simulations , 2004 .

[83]  James J. McGuirk,et al.  Numerical Calculations of the Flow in Annular Combustor Dump Diffuser Geometries , 1989 .

[84]  James J. McGuirk,et al.  Novel Implementation and Assessment of a Digital Filter Based Approach for the Generation of LES Inlet Conditions , 2007 .

[85]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[86]  W. Jones,et al.  Large eddy simulation of a model gas turbine combustor , 2004 .

[87]  Heinz Pitsch,et al.  Coupled RANS-LES computation of a compressor and combustor in a gas turbine engine , 2004 .

[88]  J. Fröhlich,et al.  Segregated LES/RANS Coupling Conditions for the Simulation of Complex Turbulent Flows , 2009 .

[89]  C. T. J. Scrivener,et al.  Influence of Compressor Exit Conditions on Diffuser Performance , 1978 .

[90]  P. Moin,et al.  Large-eddy simulation of turbulent confined coannular jets , 1996, Journal of Fluid Mechanics.

[91]  A. Spille-Kohoff,et al.  Generation of Turbulent Inflow Data with a Prescribed Shear-Stress Profile , 2001 .

[92]  C. Pierce,et al.  Progress-variable approach for large-eddy simulation of turbulent combustion , 2001 .

[93]  T. Zierer,et al.  Experimental Investigation of the Flow in Diffusers Behind an Axial Flow Compressor , 1993 .

[94]  K. C. Karki,et al.  A Computational Procedure for Diffuser-Combustor Flow Interaction Analysis , 1990 .

[95]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[96]  Jonathan F. Carrotte,et al.  Influence of Compressor Exit Conditions on Combustor Annular Diffusers Part II: Flow Redistribution , 2001 .

[97]  Leigh Lapworth,et al.  PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimisation , 2003 .

[98]  P. Spalart Detached-Eddy Simulation , 2009 .

[99]  Shahrokh Shahpar SOPHY: AN INTEGRATED CFD BASED AUTOMATIC DESIGN OPTIMISATION SYSTEM , 2005 .

[100]  Jochen Fröhlich,et al.  COUPLING CONDITIONS FOR LES WITH DOWNSTREAM RANS FOR THE PREDICTION OF INCOMPRESSIBLE TURBULENT FLOWS , 2007 .

[101]  Jeffrey S. Baggett,et al.  On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows , 1999 .

[102]  Budugur Lakshminarayana,et al.  Turbulence modeling for complex shear flows , 1985 .

[103]  Elias Balaras,et al.  Interface Conditions for Hybrid RANS/LES Calculations , 2005 .

[104]  Parviz Moin,et al.  Study of flow in a planar asymmetric diffuser using large-eddy simulation , 1999, Journal of Fluid Mechanics.

[105]  B. Launder,et al.  Progress in the development of a Reynolds-stress turbulence closure , 1975, Journal of Fluid Mechanics.

[106]  Michael G. Dunn,et al.  Unsteady Interaction Between a Transonic Turbine Stage and Downstream Components , 2002 .