Nonlinear Midinfrared Photothermal Spectroscopy Using Zharov Splitting and Quantum Cascade Lasers

We report on the mid-infrared nonlinear photothermal spectrum of the neat liquid crystal 4-octyl-4′-cyanobiphenyl (8CB) using a tunable Quantum Cascade Laser (QCL). The nonequilibrium steady state characterized by the nonlinear photothermal infrared response undergoes a supercritical bifurcation. The bifurcation, observed in heterodyne two-color pump–probe detection, leads to ultrasharp nonlinear infrared spectra similar to those reported in the visible region. A systematic study of the peak splitting as a function of absorbed infrared power shows the bifurcation has a critical exponent of 0.5. The observation of an apparently universal critical exponent in a nonequilibrium state is explained using an analytical model analogous of mean field theory. Apart from the intrinsic interest for nonequilibrium studies, nonlinear photothermal methods lead to a dramatic narrowing of spectral lines, giving rise to a potential new contrast mechanism for the rapidly emerging new field of mid-infrared microspectroscopy using QCLs.

[1]  Laurent Cognet,et al.  Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment , 2006 .

[2]  Paul V. Ruijgrok,et al.  Room-Temperature Detection of a Single Molecule’s Absorption by Photothermal Contrast , 2010, Science.

[3]  J. Faist,et al.  Quantum cascade laser: a unipolar intersubband semiconductor laser , 1994, Proceedings of IEEE 14th International Semiconductor Laser Conference.

[4]  Wei Min,et al.  Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy , 2010 .

[5]  Vladimir P. Zharov,et al.  Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit , 2011, Nature photonics.

[6]  J. Thoen,et al.  Temperature dependence of the enthalpy and the heat capacity of the liquid-crystal octylcyanobiphenyl (8CB) , 1982 .

[7]  Vladimir Liberman,et al.  Mid-infrared photothermal heterodyne spectroscopy in a liquid crystal using a quantum cascade laser. , 2012, Applied physics letters.

[8]  D. Davidov,et al.  High-resolution x-ray and light-scattering study of critical behavior associated with the nematic—smectic- A transition in 4-cyano-4′-octylbiphenyl , 1979 .

[9]  Peter R. Griffiths,et al.  Comprar Fourier Transform Infrared Spectrometry | James D. Winefordner | 9780471194040 | Wiley , 2007 .

[10]  Mike Thomas,et al.  Two-dimensional FT-IR correlation analysis of the phase transitions in a liquid crystal, 4′-n-octyl-4-cyanobiphenyl (8CB) , 2000 .

[11]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[12]  A. E. Cetin,et al.  Field-effect active plasmonics for ultracompact electro-optic switching , 2012 .

[13]  Vladimir P Zharov,et al.  Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores. , 2012, Biophysical journal.

[14]  S. V. Trukhachev,et al.  Investigation of 4′-n-alkyl-4-cyanobiphenyls structure features by IR spectroscopy methods , 2005 .

[15]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[16]  R. Fricke,et al.  Surface layer in composites containing 4-n-octyl-4′-cyanobiphenyl. FTIR spectroscopic characterization , 2003 .

[17]  Gerhard A Blab,et al.  Label-free optical imaging of mitochondria in live cells. , 2007, Optics express.

[18]  Sri-Rajasekhar Kothapalli,et al.  Phase contrast imaging using photothermally induced phase transitions in liquid crystals , 2006 .

[19]  A. E. Cetin,et al.  Thermal Tuning of Surface Plasmon Polaritons Using Liquid Crystals , 2013 .

[20]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[21]  Stephen E. Bialkowski,et al.  Photothermal spectroscopy methods for chemical analysis , 1995 .

[22]  V. Zharov,et al.  Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics , 2013, Scientific Reports.

[23]  L. Cognet,et al.  Nanoscale Thermotropic Phase Transitions Enhancing Photothermal Microscopy Signals. , 2012, The journal of physical chemistry letters.

[24]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[25]  Gwyn P. Williams,et al.  Infrared synchrotron radiation programs at the National Synchrotron Light Source , 1998 .

[26]  H. K. Wickramasinghe,et al.  Nonlinear photothermal imaging , 1986 .

[27]  Y. Shen,et al.  Early dynamics of guest-host interaction in dye-doped liquid crystalline materials. , 2003, Physical review letters.

[28]  Thomas Thundat,et al.  Pump–probe photothermal spectroscopy using quantum cascade lasers , 2012 .

[29]  Enkeleda Dervishi,et al.  Super-resolution nonlinear photothermal microscopy. , 2014, Small.

[30]  D. Choquet,et al.  Single metallic nanoparticle imaging for protein detection in cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  F. Capasso,et al.  New frontiers in quantum cascade lasers and applications , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  Stéphane Berciaud,et al.  Absorption spectroscopy of individual single-walled carbon nanotubes. , 2007, Nano letters.

[33]  S. Žumer,et al.  Thermal study of octylcyanobiphenyl liquid crystal confined to controlled-pore glass ☆ , 2004 .

[34]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[35]  J. Hafner,et al.  Photothermal bubbles as optical scattering probes for imaging living cells. , 2008, Nanomedicine.

[36]  Measurement of the Soret coefficients in organic/water mixtures by thermal lens spectrometry , 2013 .

[37]  A. Boccara,et al.  Photothermal deflection spectroscopy and detection. , 1981, Applied optics.

[38]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[39]  P. Griffiths Fourier Transform Infrared Spectrometry , 2007 .