Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers

Layered van der Waals materials have risen as a powerful platform to engineer artificial competing states of matter. Here we show the emergence of multiferroic order in twisted chromium trihalide bilayers, an order fully driven by the moiré pattern and absent in aligned multilayers. Using a combination of spin models and ab initio calculations, we show that a spin texture is generated in the moiré supercell of the twisted system as a consequence of the competition between stacking-dependent interlayer magnetic exchange and magnetic anisotropy. An electric polarization arises associated with such a non-collinear magnetic state due to the spin–orbit coupling, leading to the emergence of a local ferroelectric order following the moiré. Among the stochiometric trihalides, our results show that twisted CrBr3 bilayers give rise to the strongest multiferroic order. We further show the emergence of a strong magnetoelectric coupling, which allows the electric generation and control of magnetic skyrmions. Our results put forward twisted chromium trihalide bilayers, and in particular CrBr3 bilayers, as a powerful platform to engineer artificial multiferroic materials and electrically tunable topological magnetic textures.

[1]  V. Fal’ko,et al.  Superexchange and spin-orbit coupling in monolayer and bilayer chromium trihalides , 2022, Physical Review B.

[2]  Moon Jip Park,et al.  Theory of Moire Magnets and Topological Magnons: Applications to Twisted Bilayer CrI3 , 2022, 2206.05264.

[3]  Kenji Watanabe,et al.  Evidence for unconventional superconductivity in twisted trilayer graphene , 2022, Nature.

[4]  F. Zheng Magnetic Skyrmion Lattices in a Novel 2D‐Twisted Bilayer Magnet , 2022, Advanced Functional Materials.

[5]  Kenji Watanabe,et al.  Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide , 2022, Nature Electronics.

[6]  J. Lado,et al.  Topological multiferroic order in twisted transition metal dichalcogenide bilayers , 2022, SciPost Physics.

[7]  D. Soriano Domain Wall Formation and Magnon Localization in Twisted Chromium Trihalides , 2022, physica status solidi (RRL) – Rapid Research Letters.

[8]  S. Sung,et al.  Evidence of non-collinear spin texture in magnetic moiré superlattices , 2022, Nature Physics.

[9]  J. Moodera,et al.  A Van der Waals Interface Hosting Two Groups of Magnetic Skyrmions , 2021, Advanced materials.

[10]  A. O. Fumega,et al.  Microscopic origin of multiferroic order in monolayer NiI2 , 2021, 2D Materials.

[11]  Xuan Luo,et al.  Inducing and tuning Kondo screening in a narrow-electronic-band system , 2021, Nature Communications.

[12]  Kenji Watanabe,et al.  Evidence for a single-layer van der Waals multiferroic , 2021, Nature.

[13]  P. Liljeroth,et al.  Moiré-Enabled Topological Superconductivity , 2020, Nano letters.

[14]  V. Fal’ko,et al.  Superexchange and Spin-Orbit Coupling in Mono and Bilayer Chromium Trihalides , 2022 .

[15]  F. Zheng Prediction of Magnetic Skyrmions in A New Kind of Twisted Bilayer CrI 3 , 2022 .

[16]  D. Muller,et al.  Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3 , 2021, Nature Nanotechnology.

[17]  J. Wrachtrup,et al.  Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets , 2021, Science.

[18]  Kenji Watanabe,et al.  Evidence for unconventional superconductivity in twisted bilayer graphene , 2021, Nature.

[19]  S. Louie,et al.  Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy , 2021, Nature Physics.

[20]  R. Weitz,et al.  Quantum anomalous Hall octet driven by orbital magnetism in bilayer graphene , 2021, Nature.

[21]  J. Shan,et al.  Quantum anomalous Hall effect from intertwined moiré bands , 2021, Nature.

[22]  O. Erten,et al.  Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. , 2021, Nano letters.

[23]  T. Das,et al.  Hierarchy of multi-order skyrmion phases in twisted magnetic bilayers , 2021, Physical Review B.

[24]  Haiwen Ge,et al.  Twist engineering of the two-dimensional magnetism in double bilayer chromium triiodide homostructures , 2021, Nature Physics.

[25]  P. Liljeroth,et al.  Artificial heavy fermions in a van der Waals heterostructure , 2021, Nature.

[26]  Keqiu Chen,et al.  Magnetization textures in twisted bilayer CrX3 ( X =Br, I) , 2021, Physical Review Research.

[27]  D. Muller,et al.  Emergence of a noncollinear magnetic state in twisted bilayer CrI3 , 2021, 2103.09850.

[28]  Kenji Watanabe,et al.  Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene , 2021, Nature.

[29]  L. Balents,et al.  Heterobilayer moiré magnets: Moiré skyrmions and commensurate-incommensurate transitions , 2020, Physical Review B.

[30]  E. Tsymbal,et al.  Van der Waals Multiferroic Tunnel Junctions. , 2020, Nano letters.

[31]  A. Foster,et al.  Topological superconductivity in a van der Waals heterostructure , 2020, Nature.

[32]  M. Gibertini Magnetism and stability of all primitive stacking patterns in bilayer chromium trihalides , 2020, Journal of Physics D: Applied Physics.

[33]  Xiaodong Xu,et al.  Stacking Domain Wall Magnons in Twisted van der Waals Magnets. , 2020, Physical review letters.

[34]  Kenji Watanabe,et al.  Strongly correlated Chern insulators in magic-angle twisted bilayer graphene , 2020, Nature.

[35]  Ying Ran,et al.  Accessing new magnetic regimes by tuning the ligand spin-orbit coupling in van der Waals magnets , 2020, Science Advances.

[36]  K. Novoselov,et al.  Biquadratic exchange interactions in two-dimensional magnets , 2020, npj Computational Materials.

[37]  L. Balents,et al.  Noncollinear phases in moiré magnets , 2020, Proceedings of the National Academy of Sciences.

[38]  J. Zhu,et al.  Electrical switching of magnetic order in an orbital Chern insulator , 2020, Nature.

[39]  Li Yang,et al.  Meron-like topological spin defects in monolayer CrCl3 , 2020, Nature Communications.

[40]  J. Zhu,et al.  Intrinsic quantized anomalous Hall effect in a moiré heterostructure , 2019, Science.

[41]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[42]  E. Kaxiras,et al.  Enhancement of interlayer exchange in an ultrathin two-dimensional magnet , 2019, Nature Physics.

[43]  Xiaodong Xu,et al.  Direct observation of van der Waals stacking–dependent interlayer magnetism , 2019, Science.

[44]  Joshua E. Goldberger,et al.  Pressure-controlled interlayer magnetism in atomically thin CrI3 , 2019, Nature Materials.

[45]  Michael A. McGuire,et al.  Switching 2D magnetic states via pressure tuning of layer stacking , 2019, Nature Materials.

[46]  J. Hao,et al.  Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit , 2019, Nature Communications.

[47]  Kenji Watanabe,et al.  Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene , 2019, Nature.

[48]  R. Ramesh,et al.  Advances in magnetoelectric multiferroics , 2019, Nature Materials.

[49]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[50]  A. MacDonald,et al.  Topological Insulators in Twisted Transition Metal Dichalcogenide Homobilayers. , 2018, Physical review letters.

[51]  D. Soriano,et al.  Interplay between interlayer exchange and stacking in CrI3 bilayers , 2018, Solid State Communications.

[52]  W. Yao,et al.  Skyrmions in the Moiré of van der Waals 2D Magnets. , 2018, Nano letters.

[53]  Jia-An Yan,et al.  Strain-tunable magnetic anisotropy in monolayer CrCl3 , CrBr3 , and CrI3 , 2018, Physical Review B.

[54]  Satoshi Okamoto,et al.  Stacking-Dependent Magnetism in Bilayer CrI3. , 2018, Nano letters.

[55]  M. Stone,et al.  Topological Spin Excitations in Honeycomb Ferromagnet CrI3 , 2018, Physical review. X.

[56]  Laurent Bellaiche,et al.  Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers , 2018, npj Computational Materials.

[57]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[58]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[59]  T. Taniguchi,et al.  Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling , 2018, Science.

[60]  M. Stone,et al.  Topological Spin Excitations in Honeycomb Ferromagnet CrI , 2018 .

[61]  J. Fern'andez-Rossier,et al.  On the origin of magnetic anisotropy in two dimensional CrI3 , 2017, 1704.03849.

[62]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[63]  M. Fiebig,et al.  The evolution of multiferroics , 2016 .

[64]  Chi-Hang Lam,et al.  Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides , 2015, 1507.07275.

[65]  Zhi-Xun Shen,et al.  Characterization of collective ground states in single-layer NbSe2 , 2015, Nature Physics.

[66]  M. Alexe,et al.  Reversible electrical switching of spin polarization in multiferroic tunnel junctions. , 2012, Nature materials.

[67]  A. Fert,et al.  Tunnel junctions with multiferroic barriers. , 2007, Nature materials.

[68]  Maxim Mostovoy,et al.  Ferroelectricity in spiral magnets. , 2005, Physical review letters.

[69]  M. Fiebig Revival of the magnetoelectric effect , 2005 .

[70]  N. Nagaosa,et al.  Spin current and magnetoelectric effect in noncollinear magnets. , 2004, Physical review letters.

[71]  S. Cheong,et al.  Electric polarization reversal and memory in a multiferroic material induced by magnetic fields , 2004, Nature.

[72]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[73]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[74]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[75]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .