Implementation of the Daytime Cloud Optical and Microphysical Properties Algorithm (DCOMP) in PATMOS-x

AbstractThis paper describes the daytime cloud optical and microphysical properties (DCOMP) retrieval for the Pathfinder Atmosphere’s Extended (PATMOS-x) climate dataset. Within PATMOS-x, DCOMP is applied to observations from the Advanced Very High Resolution Radiometer and employs the standard bispectral approach to estimate cloud optical depth and particle size. The retrievals are performed within the optimal estimation framework. Atmospheric-correction and forward-model parameters, such as surface albedo and gaseous absorber amounts, are obtained from numerical weather prediction reanalysis data and other climate datasets. DCOMP is set up to run on sensors with similar channel settings and has been successfully exercised on most current meteorological imagers. This quality makes DCOMP particularly valuable for climate research. Comparisons with the Moderate Resolution Imaging Spectroradiometer (MODIS) collection-5 dataset are used to estimate the performance of DCOMP.

[1]  Andi Walther,et al.  A Naive Bayesian Cloud-Detection Scheme Derived fromCALIPSOand Applied within PATMOS-x , 2012 .

[2]  Andrew K. Heidinger,et al.  Rapid Daytime Estimation of Cloud Properties over a Large Area from Radiance Distributions , 2003 .

[3]  Bryan A. Baum,et al.  Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES‐R/ABI , 2010 .

[4]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[5]  T. Nakajima,et al.  Wide-Area Determination of Cloud Microphysical Properties from NOAA AVHRR Measurements for FIRE and ASTEX Regions , 1995 .

[6]  Michael D. King,et al.  Correction of Rayleigh scattering effects in cloud optical thickness retrievals , 1997 .

[7]  K. Davis,et al.  The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes , 2009 .

[8]  Eva Borbas,et al.  Development of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from Multispectral Satellite Radiance Measurements , 2008 .

[9]  Michael J. Pavolonis,et al.  Gazing at Cirrus Clouds for 25 Years through a Split Window. Part I: Methodology , 2009 .

[10]  J. Foot,et al.  Some observations of the optical properties of clouds , 2006 .

[11]  Frédéric Parol,et al.  Information Content of AVHRR Channels 4 and 5 with Respect to the Effective Radius of Cirrus Cloud Particles , 1991 .

[12]  Taneil Uttal,et al.  Daytime Global Cloud Typing from AVHRR and VIIRS: Algorithm Description, Validation, and Comparisons , 2005 .

[13]  Steven Platnick,et al.  A Validation of a Satellite Cloud Retrieval during ASTEX , 1995 .

[14]  S. Twomey,et al.  Spectral Reflectance of Clouds in the Near-Infrared: Comparison of Measurements and Calculations , 1982 .

[15]  Ralf Bennartz,et al.  Retrieval of two‐layer cloud properties from multispectral observations using optimal estimation , 2011 .

[16]  Sunny Sun-Mack,et al.  CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data—Part I: Algorithms , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[17]  D. C. Robertson,et al.  MODTRAN cloud and multiple scattering upgrades with application to AVIRIS , 1998 .

[18]  Philip Watts,et al.  Global retrieval of ATSR cloud parameters and evaluation (GRAPE): dataset assessment , 2010 .

[19]  Bryan A. Baum,et al.  Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and Models. , 2005 .

[20]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[21]  Alain Chedin,et al.  TIGR‐like atmospheric‐profile databases for accurate radiative‐flux computation , 2000 .

[22]  Rob Roebeling,et al.  Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT‐8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA‐17 , 2006 .

[23]  Steven Platnick,et al.  MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages , 2008 .

[24]  Sunny Sun-Mack,et al.  CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data—Part II: Examples of Average Results and Comparisons With Other Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[25]  A. Arking,et al.  Retrieval of Cloud Cover Parameters from Multispectral Satellite Images , 1985 .

[26]  Andrew A. Lacis,et al.  Sensitivity of cirrus cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape , 1996 .

[27]  M. King Determination of the Scaled Optical Thickness of Clouds from Reflected Solar Radiation Measurements , 1987 .

[28]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[29]  Eugenia Kalnay,et al.  Global Numerical Weather Prediction at the National Meteorological Center , 1990 .

[30]  A. Lacis,et al.  Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data. , 1994 .

[31]  James B. Pollack,et al.  Near-Infrared Light Scattering by Terrestrial Clouds , 1970 .

[32]  Joseph Sela,et al.  Spectral Modeling at the National Meteorological Center , 1980 .

[33]  W. Wiscombe Improved Mie scattering algorithms. , 1980, Applied optics.

[34]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..