Editing to a planar graph of given degrees

We consider the following graph modification problem. Let the input consist of a graph G = ( V , E ) , a weight function w : V ź E ź N , a cost function c : V ź E ź N 0 and a degree function ź : V ź N 0 , together with three integers k v , k e and C. The question is whether we can delete a set of vertices of total weight at most k v and a set of edges of total weight at most k e so that the total cost of the deleted elements is at most C and every non-deleted vertex v has degree ź ( v ) in the resulting graph G ' . We also consider the variant in which G ' must be connected. Both problems are known to be NP -complete and W 1 -hard when parameterized by k v + k e . We prove that, when restricted to planar graphs, they stay NP -complete but have polynomial kernels when parameterized by k v + k e . We study Deletion to a Planar Graph of Given Degrees and its connected variant.These problems are known to be NP-complete and W1-hard for general graphs.We construct polynomial kernels for both problems when restricted to planar graphs.

[1]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[2]  Konrad Dabrowski,et al.  Editing to a Planar Graph of Given Degrees , 2015, CSR.

[3]  C. L. Suffel THE SPANNING SUBGRAPHS OF EULERIAN GRAPHS * , 1979 .

[4]  Petr A. Golovach Editing to a Graph of Given Degrees , 2015, Theor. Comput. Sci..

[5]  Michal Pilipczuk,et al.  A ck n 5-Approximation Algorithm for Treewidth , 2016, SIAM J. Comput..

[6]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[7]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[8]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[9]  Michal Pilipczuk,et al.  Parameterized Complexity of Eulerian Deletion Problems , 2012, Algorithmica.

[10]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[11]  Iain A. Stewart Deciding whether a planar graph has a cubic subgraph is NP-complete , 1994, Discret. Math..

[12]  Rolf Niedermeier,et al.  Win-win kernelization for degree sequence completion problems , 2016, J. Comput. Syst. Sci..

[13]  Luke Mathieson,et al.  Graph editing problems with extended regularity constraints , 2015, Theor. Comput. Sci..

[14]  Petr A. Golovach Editing to a Connected Graph of Given Degrees , 2014, MFCS.

[15]  Boting Yang,et al.  Parameterized complexity of even/odd subgraph problems , 2011, J. Discrete Algorithms.

[16]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[17]  Michal Pilipczuk,et al.  An O(c^k n) 5-Approximation Algorithm for Treewidth , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[18]  Venkatesh Raman,et al.  Parameterized complexity of finding subgraphs with hereditary properties , 2000, Theor. Comput. Sci..

[19]  Stefan Szeider,et al.  Editing graphs to satisfy degree constraints: A parameterized approach , 2012, J. Comput. Syst. Sci..

[20]  Dimitrios M. Thilikos,et al.  Explicit Linear Kernels via Dynamic Programming , 2013, SIAM J. Discret. Math..

[21]  W. T. Tutte A Short Proof of the Factor Theorem for Finite Graphs , 1954, Canadian Journal of Mathematics.

[22]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[23]  Roded Sharan,et al.  Complexity classification of some edge modification problems , 1999, Discret. Appl. Math..

[24]  Dimitrios M. Thilikos,et al.  Linear kernels for (connected) dominating set on H-minor-free graphs , 2012, SODA.

[25]  Christophe Paul,et al.  Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions , 2012, ICALP.

[26]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[27]  Konrad Dabrowski,et al.  Editing to Eulerian Graphs , 2014, FSTTCS.

[28]  Flavia Bonomo,et al.  NP-completeness results for edge modification problems , 2006, Discret. Appl. Math..

[29]  Hannes Moser,et al.  Parameterized complexity of finding regular induced subgraphs , 2009, J. Discrete Algorithms.

[30]  Petr A. Golovach,et al.  Parameterized complexity of three edge contraction problems with degree constraints , 2014, Acta Informatica.

[31]  Dimitrios M. Thilikos,et al.  A linear kernel for planar red-blue dominating set , 2013, Discret. Appl. Math..

[32]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[33]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[34]  Michael R. Fellows,et al.  Review of: Fundamentals of Parameterized Complexity by Rodney G. Downey and Michael R. Fellows , 2015, SIGA.

[35]  N. Biggs MATCHING THEORY (Annals of Discrete Mathematics 29) , 1988 .