Spline-based finite-element method for the stationary quasi-geostrophic equations on arbitrary shaped coastal boundaries

Abstract This work concerns a B-spline based finite-element algorithm for the stationary quasi-geostrophic equations to treat the large scale wind-driven ocean circulation on arbitrary shaped domains. The algorithm models arbitrary shaped coastal boundaries on intra-element, or embedded boundaries. Dirichlet boundary conditions on the embedded boundaries are weakly imposed and stabilization is achieved via Nitsche’s method. We employ a hierarchical local refinement approach to improve the geometrical representation of curved boundaries. Results from several benchmark problems on rectangular and curved domains are provided to demonstrate the accuracy and robustness of the method. We also provide the Mediterranean sea example that illustrates the effectiveness of the approach in the wind-driven ocean circulation simulation.

[1]  Tae-Yeon Kim,et al.  A C0-discontinuous Galerkin method for the stationary quasi-geostrophic equations of the ocean , 2016 .

[2]  Andrew J. Weaver,et al.  A Diagnostic Barotropic Finite-Element Ocean Circulation Model , 1995 .

[3]  Traian Iliescu,et al.  A two-level finite element discretization of the streamfunction formulation of the stationary quasi-geostrophic equations of the ocean , 2012, Comput. Math. Appl..

[4]  B. Cushman-Roisin,et al.  Introduction to geophysical fluid dynamics : physical and numerical aspects , 2011 .

[5]  Nicolas Moës,et al.  Studied X-FEM enrichment to handle material interfaces with higher order finite element , 2010 .

[6]  Qiang Wang,et al.  Finite element ocean circulation model based on triangular prismatic elements, with application in studying the effect of topography representation , 2008 .

[7]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[8]  Traian Iliescu,et al.  B-spline based finite-element method for the stationary quasi-geostrophic equations of the ocean , 2015 .

[9]  George J. Fix,et al.  Finite Element Models for Ocean Circulation Problems , 1975 .

[10]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[11]  Isaac Harari,et al.  A robust Nitsche's formulation for interface problems with spline‐based finite elements , 2015 .

[12]  J. Dolbow,et al.  Microdomain evolution on giant unilamellar vesicles , 2013, Biomechanics and modeling in mechanobiology.

[13]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[14]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[15]  F. Dupont,et al.  Influence of a step-like coastline on the basin scale vorticity budget of mid-latitude gyre models , 2003 .

[16]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[17]  Rodolfo Rodríguez,et al.  A priori and a posteriori error analysis for a large-scale ocean circulation finite element model , 2003 .

[18]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[19]  Tae-Yeon Kim,et al.  A numerical method for a second-gradient theory of incompressible fluid flow , 2007, J. Comput. Phys..

[20]  Alistair Adcroft,et al.  How slippery are piecewise‐constant coastlines in numerical ocean models? , 1998 .

[21]  Alessandro Reali,et al.  Parameter‐free, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non‐conforming patches , 2015 .

[22]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[23]  Grégory Legrain,et al.  High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation , 2012 .

[24]  E. Fried,et al.  Numerical study of the wrinkling of a stretched thin sheet , 2012 .

[25]  J. Dolbow,et al.  An edge-bubble stabilized finite element method for fourth-order parabolic problems , 2009 .

[26]  J. Dolbow,et al.  Numerical study of the grain-size dependent Young’s modulus and Poisson’s ratio of bulk nanocrystalline materials , 2012 .

[27]  Y. Bazilevs,et al.  Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .

[28]  Y. Bazilevs,et al.  Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method , 2012 .

[29]  J. McWilliams Fundamentals of Geophysical Fluid Dynamics , 2011 .

[30]  Henk A. Dijkstra,et al.  Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño, , 2000 .

[31]  Andrew J. Majda,et al.  Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows , 2006 .

[32]  Wen Jiang,et al.  Adaptive refinement of hierarchical B‐spline finite elements with an efficient data transfer algorithm , 2015 .

[33]  A. Majda Introduction to PDEs and Waves in Atmosphere and Ocean , 2003 .