Population dynamics: Variance and the sigmoid activation function

This paper demonstrates how the sigmoid activation function of neural-mass models can be understood in terms of the variance or dispersion of neuronal states. We use this relationship to estimate the probability density on hidden neuronal states, using non-invasive electrophysiological (EEG) measures and dynamic casual modelling. The importance of implicit variance in neuronal states for neural-mass models of cortical dynamics is illustrated using both synthetic data and real EEG measurements of sensory evoked responses.

[1]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[2]  T. Bliss,et al.  Plasticity in the human central nervous system. , 2006, Brain : a journal of neurology.

[3]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[4]  Karl J. Friston,et al.  Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization , 2006, NeuroImage.

[5]  James J. Wright,et al.  Dynamics of the brain at global and microscopic scales: Neural networks and the EEG , 1996, Behavioral and Brain Sciences.

[6]  A. Daffertshofer,et al.  Multivariate Ornstein-Uhlenbeck processes with mean-field dependent coefficients: application to postural sway. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Freeman Wj Models of the dynamics of neural populations. , 1978 .

[8]  D. Liley,et al.  Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  O. Prospero-Garcia,et al.  Reliability of Spike Timing in Neocortical Neurons , 1995 .

[10]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[11]  M Scherg,et al.  Somatotopy of human hand somatosensory cortex revealed by dipole source analysis of early somatosensory evoked potentials and 3D-NMR tomography. , 1995, Electroencephalography and clinical neurophysiology.

[12]  Karl J. Friston Volterra kernels and effective connectivity , 2003 .

[13]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[14]  H. Tuckwell,et al.  Statistical properties of stochastic nonlinear dynamical models of single spiking neurons and neural networks. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  P. Nunez The brain wave equation: a model for the EEG , 1974 .

[16]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[17]  E. Kunesch,et al.  Timing‐dependent plasticity in human primary somatosensory cortex , 2005, The Journal of physiology.

[18]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[19]  Hideo Hasegawa,et al.  Dynamical mean-field theory of spiking neuron ensembles: response to a single spike with independent noises. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Karl J. Friston,et al.  A neural mass model for MEG/EEG: coupling and neuronal dynamics , 2003, NeuroImage.

[21]  Karl J. Friston,et al.  Evoked brain responses are generated by feedback loops , 2007, Proceedings of the National Academy of Sciences.

[22]  Karl J. Friston,et al.  Mechanisms of evoked and induced responses in , 2009 .

[23]  H. C. Tuckwell,et al.  A dynamical system for the approximate moments of nonlinear stochastic models of spiking neurons and networks , 2000 .

[24]  John R. Terry,et al.  On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics , 2006 .

[25]  James J. Wright,et al.  Propagation and stability of waves of electrical activity in the cerebral cortex , 1997 .

[26]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[27]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[28]  H C Tuckwell,et al.  Noisy spiking neurons and networks: useful approximations for firing probabilities and global behavior. , 1998, Bio Systems.

[29]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[30]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[31]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[32]  P. Robinson Propagator theory of brain dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Karl J. Friston,et al.  a K.E. Stephan, a R.B. Reilly, , 2007 .

[34]  R. Miles,et al.  Cell‐attached measurements of the firing threshold of rat hippocampal neurones , 1999, The Journal of physiology.

[35]  Robert Oostenveld,et al.  LTP‐like changes induced by paired associative stimulation of the primary somatosensory cortex in humans: source analysis and associated changes in behaviour , 2007, The European journal of neuroscience.

[36]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[37]  Gustavo Deco,et al.  Extended method of moments for deterministic analysis of stochastic multistable neurodynamical systems. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[39]  H. W. Veen,et al.  Handbook of Biological Physics , 1996 .

[40]  F. H. Lopes da Silva,et al.  Models of neuronal populations: the basic mechanisms of rhythmicity. , 1976, Progress in brain research.

[41]  Stephen J. Jones,et al.  Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. , 1991, Brain : a journal of neurology.

[42]  F Grandori,et al.  Temporal segmentation and multiple-source analysis of short-latency median nerve SEPs. , 1995, Journal of medical engineering & technology.

[43]  H. Haken,et al.  Field Theory of Electromagnetic Brain Activity. , 1996, Physical review letters.

[44]  P. Robinson,et al.  Prediction of electroencephalographic spectra from neurophysiology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Paul Miller,et al.  Power-law neuronal fluctuations in a recurrent network model of parametric working memory. , 2006, Journal of neurophysiology.

[46]  Karl J. Friston,et al.  Stochastic models of neuronal dynamics , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[47]  Juan C. Jiménez,et al.  Nonlinear EEG analysis based on a neural mass model , 1999, Biological Cybernetics.

[48]  Karl J. Friston,et al.  Dynamic causal modelling of evoked potentials: A reproducibility study , 2007, NeuroImage.

[49]  W. Gerstner,et al.  Chapter 12 A framework for spiking neuron models: The spike response model , 2001 .

[50]  W. Freeman Models of the dynamics of neural populations. , 1978, Electroencephalography and clinical neurophysiology. Supplement.

[51]  Karl J. Friston,et al.  Bayesian Estimation of Dynamical Systems: An Application to fMRI , 2002, NeuroImage.

[52]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[53]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[54]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[55]  Hideo Hasegawa Dynamical mean-field theory of noisy spiking neuron ensembles: application to the Hodgkin-Huxley model. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.