Block SS-CAA: A complex moment-based parallel nonlinear eigensolver using the block communication-avoiding Arnoldi procedure

Abstract Complex moment-based parallel eigensolvers have been actively studied owing to their high parallel efficiency. In this paper, we propose a block SS–CAA method, which is a complex moment-based parallel nonlinear eigensolver that makes use of the block communication-avoiding Arnoldi procedure. Numerical experiments indicate that the proposed method has higher performance compared with traditional complex moment-based nonlinear eigensolvers, i.e., the block SS–Hankel and Beyn methods.

[1]  Tetsuya Sakurai,et al.  CONTOUR INTEGRAL EIGENSOLVER FOR NON-HERMITIAN SYSTEMS: A RAYLEIGH-RITZ-TYPE APPROACH , 2010 .

[2]  Timo Betcke,et al.  A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..

[3]  W. Beyn An integral method for solving nonlinear eigenvalue problems , 2012 .

[4]  T. Sakurai,et al.  On Locating Clusters of Zeros of Analytic Functions , 1999 .

[5]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[6]  Raymond H. Chan,et al.  A FEAST algorithm with oblique projection for generalized eigenvalue problems , 2014, Numer. Linear Algebra Appl..

[7]  Tetsuya Sakurai,et al.  A block Arnoldi-type contour integral spectral projection method for solving generalized eigenvalue problems , 2014, Appl. Math. Lett..

[8]  Marc Van Barel,et al.  Nonlinear eigenvalue problems and contour integrals , 2016, J. Comput. Appl. Math..

[9]  Tetsuya Sakurai,et al.  Stochastic estimation method of eigenvalue density for nonlinear eigenvalue problem on the complex plane , 2011, JSIAM Lett..

[10]  Tetsuya Sakurai,et al.  Parallel stochastic estimation method of eigenvalue distribution , 2010, JSIAM Lett..

[11]  Tetsuya Sakurai,et al.  Error bounds of Rayleigh–Ritz type contour integral-based eigensolver for solving generalized eigenvalue problems , 2015, Numerical Algorithms.

[12]  T. Sakurai,et al.  CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems , 2007 .

[13]  Tetsuya Sakurai,et al.  Highly Parallel Computation of Generalized Eigenvalue Problem in Vibration for Automatic Transmission of Vehicles Using the Sakurai–Sugiura Method and Supercomputers , 2017 .

[14]  Tetsuya Sakurai,et al.  Efficient Parameter Estimation and Implementation of a Contour Integral-Based Eigensolver , 2013 .

[15]  Eric Polizzi,et al.  A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.

[16]  Tetsuya Sakurai,et al.  A filter diagonalization for generalized eigenvalue problems based on the Sakurai-Sugiura projection method , 2008, J. Comput. Appl. Math..

[17]  Hiroto Tadano,et al.  A numerical method for nonlinear eigenvalue problems using contour integrals , 2009, JSIAM Lett..

[18]  Ping Tak Peter Tang,et al.  FEAST As A Subspace Iteration Eigensolver Accelerated By Approximate Spectral Projection , 2013, SIAM J. Matrix Anal. Appl..

[19]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[20]  A. Neumaier RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .

[21]  Tetsuya Sakurai,et al.  A numerical method for polynomial eigenvalue problems using contour integral , 2010 .

[22]  Wim Michiels,et al.  Compact Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2015, SIAM J. Matrix Anal. Appl..

[23]  Tetsuya Sakurai,et al.  Block Krylov-type complex moment-based eigensolvers for solving generalized eigenvalue problems , 2017, Numerical Algorithms.

[24]  Tetsuya Sakurai,et al.  Efficient and Scalable Calculation of Complex Band Structure using Sakurai-Sugiura Method , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.

[25]  Ping Tak Peter Tang,et al.  Zolotarev Quadrature Rules and Load Balancing for the FEAST Eigensolver , 2014, SIAM J. Sci. Comput..

[26]  Tetsuya Sakurai,et al.  A projection method for nonlinear eigenvalue problems using contour integrals , 2013, JSIAM Lett..

[27]  Yousef Saad,et al.  PFEAST: A High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.

[28]  H. Voss An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .

[29]  Tetsuya Sakurai,et al.  Relationships among contour integral-based methods for solving generalized eigenvalue problems , 2016 .

[30]  Axel Ruhe ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .

[31]  Wim Michiels,et al.  NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2014, SIAM J. Sci. Comput..

[32]  Tetsuya Sakurai,et al.  Performance comparison of parallel eigensolvers based on a contour integral method and a Lanczos method , 2013, Parallel Comput..