Block SS-CAA: A complex moment-based parallel nonlinear eigensolver using the block communication-avoiding Arnoldi procedure
暂无分享,去创建一个
[1] Tetsuya Sakurai,et al. CONTOUR INTEGRAL EIGENSOLVER FOR NON-HERMITIAN SYSTEMS: A RAYLEIGH-RITZ-TYPE APPROACH , 2010 .
[2] Timo Betcke,et al. A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..
[3] W. Beyn. An integral method for solving nonlinear eigenvalue problems , 2012 .
[4] T. Sakurai,et al. On Locating Clusters of Zeros of Analytic Functions , 1999 .
[5] T. Sakurai,et al. A projection method for generalized eigenvalue problems using numerical integration , 2003 .
[6] Raymond H. Chan,et al. A FEAST algorithm with oblique projection for generalized eigenvalue problems , 2014, Numer. Linear Algebra Appl..
[7] Tetsuya Sakurai,et al. A block Arnoldi-type contour integral spectral projection method for solving generalized eigenvalue problems , 2014, Appl. Math. Lett..
[8] Marc Van Barel,et al. Nonlinear eigenvalue problems and contour integrals , 2016, J. Comput. Appl. Math..
[9] Tetsuya Sakurai,et al. Stochastic estimation method of eigenvalue density for nonlinear eigenvalue problem on the complex plane , 2011, JSIAM Lett..
[10] Tetsuya Sakurai,et al. Parallel stochastic estimation method of eigenvalue distribution , 2010, JSIAM Lett..
[11] Tetsuya Sakurai,et al. Error bounds of Rayleigh–Ritz type contour integral-based eigensolver for solving generalized eigenvalue problems , 2015, Numerical Algorithms.
[12] T. Sakurai,et al. CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems , 2007 .
[13] Tetsuya Sakurai,et al. Highly Parallel Computation of Generalized Eigenvalue Problem in Vibration for Automatic Transmission of Vehicles Using the Sakurai–Sugiura Method and Supercomputers , 2017 .
[14] Tetsuya Sakurai,et al. Efficient Parameter Estimation and Implementation of a Contour Integral-Based Eigensolver , 2013 .
[15] Eric Polizzi,et al. A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.
[16] Tetsuya Sakurai,et al. A filter diagonalization for generalized eigenvalue problems based on the Sakurai-Sugiura projection method , 2008, J. Comput. Appl. Math..
[17] Hiroto Tadano,et al. A numerical method for nonlinear eigenvalue problems using contour integrals , 2009, JSIAM Lett..
[18] Ping Tak Peter Tang,et al. FEAST As A Subspace Iteration Eigensolver Accelerated By Approximate Spectral Projection , 2013, SIAM J. Matrix Anal. Appl..
[19] Nicholas J. Higham,et al. NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.
[20] A. Neumaier. RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .
[21] Tetsuya Sakurai,et al. A numerical method for polynomial eigenvalue problems using contour integral , 2010 .
[22] Wim Michiels,et al. Compact Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2015, SIAM J. Matrix Anal. Appl..
[23] Tetsuya Sakurai,et al. Block Krylov-type complex moment-based eigensolvers for solving generalized eigenvalue problems , 2017, Numerical Algorithms.
[24] Tetsuya Sakurai,et al. Efficient and Scalable Calculation of Complex Band Structure using Sakurai-Sugiura Method , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.
[25] Ping Tak Peter Tang,et al. Zolotarev Quadrature Rules and Load Balancing for the FEAST Eigensolver , 2014, SIAM J. Sci. Comput..
[26] Tetsuya Sakurai,et al. A projection method for nonlinear eigenvalue problems using contour integrals , 2013, JSIAM Lett..
[27] Yousef Saad,et al. PFEAST: A High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.
[28] H. Voss. An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .
[29] Tetsuya Sakurai,et al. Relationships among contour integral-based methods for solving generalized eigenvalue problems , 2016 .
[30] Axel Ruhe. ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .
[31] Wim Michiels,et al. NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2014, SIAM J. Sci. Comput..
[32] Tetsuya Sakurai,et al. Performance comparison of parallel eigensolvers based on a contour integral method and a Lanczos method , 2013, Parallel Comput..