Controlling an Inverted Pendulum with Bounded Controls

The dynamical behaviour of a simple underactuated mechanical system with a bounded continuous control law is analyzed. The system consists of a pendulum with an inertia disk mounted on its free extreme. It is driven applying torques to the inertia disk by means of a DC motor. The closed-loop system exhibits a rich and complex dynamic when a control parameter is varied. A numerical analysis reveals Hopf, fold and homoclinic bifurcations as the main phenomena. It is shown that the pendulum can be stabilized in its inverted position with zero velocity of the disk if the controller’s gains are appropriately chosen.

[1]  Katsuhisa Furuta,et al.  Swinging up a pendulum by energy control , 1996, Autom..

[2]  J. Craggs Applied Mathematical Sciences , 1973 .

[3]  P. Glendinning,et al.  Imperfect homoclinic bifurcations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Guanrong Chen,et al.  Hopf Bifurcation Analysis: A Frequency Domain Approach , 1996 .

[5]  Karl Johan Åström,et al.  Global Bifurcations in the Futura Pendulum , 1998 .

[6]  Olav Egeland,et al.  On global properties of passivity-based control of an inverted pendulum , 2000 .

[7]  Francisco Gordillo,et al.  Bifurcation analysis of a feedback system with dead zone and saturation , 2000 .

[8]  Javier Aracil,et al.  A frequency-domain approach to bifurcations in control systems with saturation , 2000, Int. J. Syst. Sci..

[9]  M. Spong,et al.  Stabilization of Underactuated Mechanical Systems Via Interconnection and Damping Assignment , 2000 .

[10]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[11]  G A Brown,et al.  In Situ Decommissioning—the Radical Approach for Nuclear Power Stations , 1992 .

[12]  Romeo Ortega,et al.  Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment , 2002, IEEE Trans. Autom. Control..

[13]  Guanrong Chen,et al.  Hopf bifurcation analysis , 1996 .

[14]  William S. Levine,et al.  Nonlinear controller for an inverted pendulum having restricted travel , 1995, Autom..

[15]  E. Atlee Jackson,et al.  Perspectives of nonlinear dynamics: Contents , 1990 .

[16]  E. A. Jackson,et al.  Perspectives of nonlinear dynamics , 1990 .

[17]  R. Ortega,et al.  Stabilization of nonlinear systems via forwarding mod {L/sub g/V} , 2001 .

[18]  Karl Johan Åström,et al.  Swinging up a Pendulum by Energy Control , 1996 .

[19]  Jorge L. Moiola,et al.  On anticontrol of Hopf bifurcations , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[20]  Mark W. Spong,et al.  The swing up control problem for the Acrobot , 1995 .

[21]  R. Lozano,et al.  Stabilization of the inverted pendulum around its homoclinic orbit , 2000 .

[22]  K Furuta,et al.  Swing-up Control of Inverted Pendulum Using Pseudo-State Feedback , 1992 .