Quasi-Newton Solver for Robust Non-Rigid Registration

Imperfect data (noise, outliers and partial overlap) and high degrees of freedom make non-rigid registration a classical challenging problem in computer vision. Existing methods typically adopt the l_p type robust estimator to regularize the fitting and smoothness, and the proximal operator is used to solve the resulting non-smooth problem. However, the slow convergence of these algorithms limits its wide applications. In this paper, we propose a formulation for robust non-rigid registration based on a globally smooth robust estimator for data fitting and regularization, which can handle outliers and partial overlaps. We apply the majorization-minimization algorithm to the problem, which reduces each iteration to solving a simple least-squares problem with L-BFGS. Extensive experiments demonstrate the effectiveness of our method for non-rigid alignment between two shapes with outliers and partial overlap. with quantitative evaluation showing that it outperforms state-of-the-art methods in terms of registration accuracy and computational speed. The source code is available at https://github.com/Juyong/Fast_RNRR.

[1]  Neil A. Dodgson,et al.  Fast Marching farthest point sampling , 2003, Eurographics.

[2]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Anand Rangarajan,et al.  A new algorithm for non-rigid point matching , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[4]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[5]  Hao Li,et al.  Global Correspondence Optimization for Non‐Rigid Registration of Depth Scans , 2008, Comput. Graph. Forum.

[6]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[7]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[9]  Jean Ponce,et al.  Robust image filtering using joint static and dynamic guidance , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Qionghai Dai,et al.  Robust Non-rigid Motion Tracking and Surface Reconstruction Using L0 Regularization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[11]  Olivier D. Faugeras,et al.  The Vector Distance Functions , 2003, International Journal of Computer Vision.

[12]  Kun Li,et al.  Sparse non-rigid registration of 3D shapes , 2015, SGP '15.

[13]  Gary K. L. Tam,et al.  Non-rigid registration under anisotropic deformations , 2019, Comput. Aided Geom. Des..

[14]  Szymon Rusinkiewicz,et al.  Global non-rigid alignment of 3-D scans , 2007, ACM Trans. Graph..

[15]  Hidekata Hontani,et al.  Robust nonrigid ICP using outlier-sparsity regularization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Sami Romdhani,et al.  Optimal Step Nonrigid ICP Algorithms for Surface Registration , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[18]  Tao Jiang,et al.  Huber-$$L_1$$L1-based non-isometric surface registration , 2019, The Visual Computer.

[19]  Yu-Kun Lai,et al.  Global as-Conformal-as-Possible Non-Rigid Registration of Multi-view Scans , 2019, 2019 IEEE International Conference on Multimedia and Expo (ICME).

[20]  Gary K. L. Tam,et al.  Registration of 3D Point Clouds and Meshes: A Survey from Rigid to Nonrigid , 2013, IEEE Transactions on Visualization and Computer Graphics.

[21]  Wojciech Matusik,et al.  Articulated mesh animation from multi-view silhouettes , 2008, ACM Trans. Graph..

[22]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  M. Pauly,et al.  Embedded deformation for shape manipulation , 2007, SIGGRAPH 2007.

[24]  Andrea Tagliasacchi,et al.  Eurographics Symposium on Geometry Processing 2013 Sparse Iterative Closest Point , 2022 .

[25]  Bailin Deng,et al.  Static/Dynamic Filtering for Mesh Geometry , 2017, IEEE Transactions on Visualization and Computer Graphics.

[26]  Baba C. Vemuri,et al.  A robust algorithm for point set registration using mixture of Gaussians , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[27]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[28]  Gary K. L. Tam,et al.  Diffusion pruning for rapidly and robustly selecting global correspondences using local isometry , 2014, ACM Trans. Graph..

[29]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[30]  Helmut Pottmann,et al.  Registration of point cloud data from a geometric optimization perspective , 2004, SGP '04.

[31]  Michael J. Black,et al.  FAUST: Dataset and Evaluation for 3D Mesh Registration , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Leonidas J. Guibas,et al.  Robust single-view geometry and motion reconstruction , 2009, ACM Trans. Graph..

[33]  Hans-Peter Seidel,et al.  Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data , 2009, TOGS.

[34]  Kun Li,et al.  Robust Non-Rigid Registration with Reweighted Position and Transformation Sparsity , 2019, IEEE Transactions on Visualization and Computer Graphics.

[35]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..