Weak convergence for the minimal position in a branching random walk: A simple proof

SummaryConsider the boundary case in a one-dimensional super-critical branching random walk. It is known that upon the survival of the system, the minimal position after n steps behaves in probability like $$ \frac{3} {2} $$ log n when n → ∞. We give a simple and self-contained proof of this result, based exclusively on elementary properties of sums of i.i.d. real-valued random variables.

[1]  P. Révész Random Walks of Infinitely Many Particles , 1994 .

[2]  J. Kingman The First Birth Problem for an Age-dependent Branching Process , 1975 .

[3]  Francesco Caravenna,et al.  A local limit theorem for random walks conditioned to stay positive , 2005 .

[4]  M. V. Kozlov,et al.  On the Asymptotic Behavior of the Probability of Non-Extinction for Critical Branching Processes in a Random Environment , 1977 .

[5]  Yueyun Hu,et al.  Asymptotics for the survival probability in a killed branching random walk , 2008 .

[6]  Russell Lyons,et al.  A Simple Path to Biggins’ Martingale Convergence for Branching Random Walk , 1998, math/9803100.

[7]  Quansheng Liu Sur certaines martingales de Mandelbrot généralisées , 1999 .

[8]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[9]  J. Biggins THE FIRST- AND LAST-BIRTH PROBLEMS FOR A MULTITYPE AGE-DEPENDENT BRANCHING PROCESS , 1976 .

[10]  Colin McDiarmid,et al.  Minimal Positions in a Branching Random Walk , 1995 .

[11]  Vladimir Vatutin,et al.  Local probabilities for random walks conditioned to stay positive , 2007, 0711.1302.

[12]  L. Addario-Berry,et al.  Minima in branching random walks , 2007, 0712.2582.

[13]  Bruno Jaffuel,et al.  The critical random barrier for the survival of branching random walk with absorption , 2009, 0911.2227.

[14]  Russell Lyons,et al.  Conceptual proofs of L log L criteria for mean behavior of branching processes , 1995 .

[15]  J. Hammersley Postulates for Subadditive Processes , 1974 .

[16]  Erwin Bolthausen,et al.  On a Functional Central Limit Theorem for Random Walks Conditioned to Stay Positive , 1976 .

[17]  Yueyun Hu,et al.  Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees , 2007, math/0702799.

[18]  Andreas E. Kyprianou,et al.  Fixed Points of the Smoothing Transform: the Boundary Case , 2005 .