Molecular‐beam‐epitaxy GaAs regrowth with clean interfaces by arsenic passivation
暂无分享,去创建一个
S. P. Kowalczyk | D. Miller | K. Elliott | R. Chen | D. Miller | R. T. Chen
[1] N. Newman,et al. Aluminum Schottky barrier formation on arsenic capped and heat cleaned MBE GaAs(100) , 1984 .
[2] T. Nakagawa,et al. Arsenic passivation: a possible remedy for MBE growth-interruption problems , 1984 .
[3] T. Jackson,et al. Photoelectrochemical passivation of GaAs surfaces , 1983 .
[4] L. Eastman,et al. Carrier compensation at interfaces formed by molecular beam epitaxy , 1982 .
[5] A. Kahn. Comparative LEED studies of AlxGa1-xAs(110) and GaAs(110) Al(vartheta) , 1982 .
[6] S. P. Kowalczyk,et al. Protection of molecular beam epitaxy grown AlxGa1−xAs epilayers during ambient transfer , 1981 .
[7] P. Newman,et al. Low cost spinner for semiconductor surface preparation prior to MBE growth , 1981 .
[8] M. Bettini,et al. Tellurium coating of PbTe surfaces , 1979 .
[9] S. Ohr. Elastic fields of a dislocation loop near a stress‐free surface , 1978 .
[10] K. Nakai,et al. Growth of Iron‐Doped Epitaxial Layers for GaAs Field Effect Transistors , 1977 .
[11] M. Ozeki,et al. Photo-Ionization Cross Section Measurements of Deep Levels in Iron Doped GaAs , 1976 .
[12] D. Lang,et al. A study of deep levels in GaAs by capacitance spectroscopy , 1975 .
[13] A. Y. Cho,et al. Interface and doping profile characteristics with molecular‐beam epitaxy of GaAs: GaAs voltage varactor , 1974 .
[14] Lionel C. Kimerling,et al. Influence of deep traps on the measurement of free‐carrier distributions in semiconductors by junction capacitance techniques , 1974 .