An overview on properties and applications of poly(butylene adipate‐co‐terephthalate)–PBAT based composites

[1]  Alain Dufresne,et al.  Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. , 2005, Biomacromolecules.

[2]  H. Jin,et al.  Properties and biodegradation of poly(ethylene adipate) and poly(butylene succinate) containing styrene glycol units , 2000 .

[3]  W. Deckwer,et al.  Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance , 1997 .

[4]  R. Sen,et al.  Antimicrobial activity and biodegradation behavior of poly(butylene adipate‐co‐terephthalate)/clay nanocomposites , 2014 .

[5]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[6]  M. Misra,et al.  Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World , 2002, Renewable Energy.

[7]  H. Tse,et al.  Plastic waste in the marine environment: A review of sources, occurrence and effects. , 2016, The Science of the total environment.

[8]  W. Deckwer,et al.  Architecture of biodegradable copolyesters containing aromatic constituents , 1998 .

[9]  Zhaobin Qiu,et al.  Preparation, crystallization, and properties of biodegradable poly(butylene adipate‐co‐terephthalate)/organomodified montmorillonite nanocomposites , 2011 .

[10]  F. Hasan,et al.  Biological degradation of plastics: a comprehensive review. , 2008, Biotechnology advances.

[11]  K. Lozano,et al.  Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites , 2017 .

[12]  Valentina Siracusa,et al.  Biodegradable polymers for food packaging: a review , 2008 .

[13]  P. Chang,et al.  Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid) , 2011 .

[14]  Christian Belloy,et al.  Polymer biodegradation: mechanisms and estimation techniques. , 2008, Chemosphere.

[15]  M. Misra,et al.  New engineered biocomposites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly(butylene adipate-co-terephthalate) (PBAT) blends and switchgrass: Fabrication and performance evaluation , 2013 .

[16]  E. Pollet,et al.  Nonisothermal crystallization behavior of poly(butylene adipate‐co‐terephthalate)/clay nano‐biocomposites , 2007 .

[17]  L. Lona,et al.  Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals , 2017 .

[18]  L. S. Cividanes,et al.  Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents , 2015 .

[19]  H. Abe,et al.  Solid-state structures and thermal properties of aliphatic–aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters , 2004 .

[20]  A. Dufresne,et al.  Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications , 2017 .

[21]  S. Muñoz-Guerra,et al.  A review on the potential biodegradability of poly(ethylene terephthalate) , 1999 .

[22]  M. González-Rodríguez,et al.  Nanoclay‐reinforced poly(butylene adipate‐co‐terephthalate) biocomposites for packaging applications , 2012 .

[23]  E. J. Foster,et al.  Cellulose nanocrystal driven crystallization of poly(d,l‐lactide) and improvement of the thermomechanical properties , 2015 .

[24]  L. S. Cividanes,et al.  Functionalization of Multi-Walled Carbon Nanotube and Mechanical Property of Epoxy-Based Nanocomposite , 2015 .

[25]  C. Laurencin,et al.  Biodegradable polymers as biomaterials , 2007 .

[26]  R. Gross,et al.  Biodegradable polymers for the environment. , 2002, Science.

[27]  W. Deckwer,et al.  Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. , 2001, Chemosphere.

[28]  C. Rossell,et al.  Integrated production of biodegradable plastic, sugar and ethanol , 2001, Applied Microbiology and Biotechnology.

[29]  R. Blackburn Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment. , 2004, Environmental science & technology.

[30]  Jorge F. J. Coelho,et al.  Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency , 2015 .

[31]  Zhe Zhou,et al.  Cellulose nanocrystals as green fillers to improve crystallization and hydrophilic property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) , 2011 .

[32]  M. Misra,et al.  Biodegradable green composites from bioethanol co-product and poly(butylene adipate-co-terephthalate). , 2013 .

[33]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[34]  V. Thakur,et al.  Synthesis and Applications of Biodegradable Soy Based Graft Copolymers: A Review , 2016 .

[35]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[36]  L. S. Cividanes,et al.  Functionalization of Carbon Nanotube and Applications , 2016 .

[37]  M. Shibata,et al.  Biodegradation of poly(butylene adipate-co-butylene terephthalate)/Layered-Silicate Nanocomposites , 2007 .

[38]  A. Maazouz,et al.  Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy , 2012 .

[39]  T. Knepper,et al.  Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups , 2010 .

[40]  B. G. Soares,et al.  Fully biodegradable composites based on poly(butylene adipate-co-terephthalate)/peach palm trees fiber , 2017 .

[41]  Youssef Habibi,et al.  Key advances in the chemical modification of nanocelluloses. , 2014, Chemical Society reviews.

[42]  L. Chan,et al.  Alginates as a useful natural polymer for microencapsulation and therapeutic applications , 2012 .

[43]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[44]  H. Choi,et al.  Dispersion study of nanofibrillated cellulose based poly(butylene adipate-co-terephthalate) composites. , 2014, Carbohydrate polymers.

[45]  L. Grøndahl,et al.  Enhancing expanded poly(tetrafluoroethylene) (ePTFE) for biomaterials applications , 2014 .

[46]  M. Santare,et al.  Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films , 2003 .

[47]  A. Dufresne,et al.  Impact of cellulose nanocrystal aspect ratio on crystallization and reinforcement of poly(butylene adipate‐co‐terephthalate) , 2016 .

[48]  Wei Chen,et al.  Synthesis and Characterization of Poly(butylene adipate-co- terephthalate) Catalyzed by Rare Earth Stearates , 2007 .

[49]  K. Lozano,et al.  Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene , 2007 .

[50]  M. Suvanto,et al.  Influence of carbon nanotube–polymeric compatibilizer masterbatches on morphological, thermal, mechanical, and tribological properties of polyethylene , 2011 .

[51]  W. Deckwer,et al.  New biodegradable polyester-copolymers from commodity chemicals with favorable use properties , 1995 .

[52]  M. C. Branciforti,et al.  Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals , 2016 .

[53]  S. Pruvost,et al.  Ionic Liquids as Surfactants for Layered Double Hydroxide Fillers: Effect on the Final Properties of Poly(Butylene Adipate-Co-Terephthalate) , 2017, Nanomaterials.

[54]  J. Yeow,et al.  Polymer-composite materials for radiation protection. , 2012, ACS applied materials & interfaces.

[55]  J. Derraik The pollution of the marine environment by plastic debris: a review. , 2002, Marine pollution bulletin.

[56]  M. Sain,et al.  Nanocellulose from Curava Fibers and their Nanocomposites , 2010 .

[57]  K. Rhee,et al.  A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites , 2015 .

[58]  T. Witzke A new aluminium chloride mineral from Oelsnitz near Zwickau, Saxony, Germany , 1997 .

[59]  L. S. Cividanes,et al.  Functionalizing Graphene and Carbon Nanotubes: A Review , 2016 .

[60]  A. Mohanty,et al.  A New Biodegradable Injection Moulded Bioplastic from Modified Soy Meal and Poly (butylene adipate-co-terephthalate): Effect of Plasticizer and Denaturant , 2013, Journal of Polymers and the Environment.

[61]  Boyan Slat,et al.  River plastic emissions to the world's oceans , 2017, Nature Communications.

[62]  R. Scaffaro,et al.  Polysaccharide nanocrystals as fillers for PLA based nanocomposites , 2017, Cellulose.

[63]  Alain Dufresne,et al.  Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges , 2014 .

[64]  M. Kemell,et al.  Thermal and Mechanical Properties of Sustainable Composites Reinforced with Natural Fibers , 2015, Journal of Polymers and the Environment.

[65]  A. Dufresne,et al.  Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process , 2015 .

[66]  I. Pinheiro,et al.  Polymeric biocomposites of poly (butylene adipate-co-terephthalate) reinforced with natural Munguba fibers , 2014, Cellulose.

[67]  L. Eagle,et al.  The role of social marketing, marine turtles and sustainable tourism in reducing plastic pollution. , 2016, Marine pollution bulletin.

[68]  Huining Xiao,et al.  Soil burial biodegradation of antimicrobial biodegradable PBAT films , 2015 .

[69]  T. Knepper,et al.  Environmental biodegradation of synthetic polymers I. Test methodologies and procedures , 2009 .

[70]  T. Rocha-Santos,et al.  (Nano)plastics in the environment - Sources, fates and effects. , 2016, The Science of the total environment.

[71]  B. D. Hardesty,et al.  Using expert elicitation to estimate the impacts of plastic pollution on marine wildlife , 2016 .

[72]  R. E. S. Bretas,et al.  Melt extruded nanocomposites of polybutylene adipate‐co‐terephthalate (PBAT) with phenylbutyl isocyanate modified cellulose nanocrystals , 2016 .

[73]  P. Ma,et al.  Structure and properties of surface-acetylated cellulose nanocrystal/poly(butylene adipate-co-terephthalate) composites , 2016, Polymer Bulletin.

[74]  J. Puiggalí,et al.  Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s , 2014, International journal of molecular sciences.

[75]  R. P. John,et al.  An overview of the recent developments in polylactide (PLA) research. , 2010, Bioresource technology.

[76]  A. Dufresne,et al.  Sustainable biodegradable coffee grounds filler and its effect on the hydrophobicity, mechanical and thermal properties of biodegradable PBAT composites , 2017 .

[77]  Ming Yang,et al.  Characterization, degradation and biocompatibility of PBAT based nanocomposites , 2013 .

[78]  M. C. Branciforti,et al.  Nanocomposites of PBAT and cellulose nanocrystals modified by “in situ” polymerization and melt extrusion , 2016 .

[79]  M. Misra,et al.  Biofibres, biodegradable polymers and biocomposites: An overview , 2000 .

[80]  T. Webster,et al.  Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. , 2017, Colloids and surfaces. B, Biointerfaces.

[81]  F. Marciano,et al.  Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers. , 2016, Materials science & engineering. C, Materials for biological applications.

[82]  A. Lobo,et al.  Designing a novel nanocomposite for bone tissue engineering using electrospun conductive PBAT/polypyrrole as a scaffold to direct nanohydroxyapatite electrodeposition , 2016 .

[83]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[84]  L. S. Cividanes,et al.  How Do CNT affect the branch and crosslink reactions in CNT-epoxy , 2017 .

[85]  Y. Sugahara,et al.  Nanocomposites based on poly(butylene adipate‐co‐terephthalate) and montmorillonite , 2005 .

[86]  Jordi Puiggalí,et al.  Characterization and degradation behavior of poly(butylene adipate‐co‐terephthalate)s , 2002 .

[87]  S. Nayak,et al.  Biodegradable Nanocomposites of Poly(butylene adipate-co-terephthalate) (PBAT) and Organically Modified Layered Silicates , 2012, Journal of Polymers and the Environment.

[88]  W. Deckwer,et al.  Biodegradation of polyesters containing aromatic constituents. , 2001, Journal of biotechnology.

[89]  P. Dubois,et al.  Novel High-Performance Talc/Poly[(butylene adipate)-co-terephthalate] Hybrid Materials , 2008 .

[90]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[91]  Julien Bras,et al.  Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications , 2010 .

[92]  Huining Xiao,et al.  Non-leaching antimicrobial biodegradable PBAT films through a facile and novel approach. , 2016, Materials science & engineering. C, Materials for biological applications.

[93]  A. Boccaccini,et al.  Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. , 2006, Biomaterials.

[94]  L. S. Cividanes,et al.  Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites , 2016 .

[95]  L. Avérous,et al.  Properties of thermoplastic composites based on wheat-straw Lignocellulosic fillers , 2004 .

[96]  K. Lee,et al.  Properties of potentially biodegradable copolyesters of (succinic acid–1,4-butanediol)/(dimethyl terephthalate–1,4-butanediol) , 1999 .

[97]  Véronique Favier,et al.  Nanocomposite materials from latex and cellulose whiskers , 1995 .

[98]  Paul Kiekens,et al.  Biopolymers: overview of several properties and consequences on their applications. , 2002 .

[99]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[100]  A. Dufresne,et al.  Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation , 2011 .

[101]  K. Oksman,et al.  Review of the recent developments in cellulose nanocomposite processing , 2016 .

[102]  A. Dufresne,et al.  Structural Reorganization of CNC in Injection-Molded CNC/PBAT Materials under Thermal Annealing. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[103]  Luc Avérous,et al.  Nano-biocomposites: Biodegradable polyester/nanoclay systems , 2009 .

[104]  L. Avérous,et al.  Poly (butylene adipate-co-terephthalate)/hydroxyapatite composite structures for bone tissue recovery , 2015 .

[105]  A. Pirrotta,et al.  PLA based biocomposites reinforced with Arundo donax fillers , 2014 .

[106]  Ming Yang,et al.  Preparation and characterization of nanocomposite of maleated poly(butylene adipate-co-terephthalate) with organoclay. , 2015, Materials science & engineering. C, Materials for biological applications.

[107]  A. Bakry,et al.  Flexible aliphatic poly(isocyanurate–oxazolidone) resins based on poly(ethylene glycol) diglycidyl ether and 4,4′‐methylene dicyclohexyl diisocyanate , 2016 .

[108]  M. Okada Chemical syntheses of biodegradable polymers , 2002 .

[109]  Sergio Bocchini,et al.  PBAT based nanocomposites for medical and industrial applications. , 2012, Materials science & engineering. C, Materials for biological applications.

[110]  Sujata K. Bhatia,et al.  Biobased plastics and bionanocomposites: Current status and future opportunities , 2013 .

[111]  M. N. R. Kumar A review of chitin and chitosan applications , 2000 .

[112]  Alain Dufresne,et al.  Nanocellulose: a new ageless bionanomaterial , 2013 .

[113]  A. Dufresne,et al.  “Green polyethylene” and curauá cellulose nanocrystal based nanocomposites: Effect of vegetable oils as coupling agent and processing technique , 2015 .

[114]  Y. Ikada,et al.  Biodegradable polyesters for medical and ecological applications , 2000 .