H-bases for polynomial interpolation and system solving

The H-basis concept allows, similarly to the Gröbner basis concept, a reformulation of nonlinear problems in terms of linear algebra. We exhibit parallels of the two concepts, show properties of H-bases, discuss their construction and uniqueness questions, and prove that n polynomials in n variables are, under mild conditions, already H-bases. We apply H-bases to the solution of polynomial systems by the eigenmethod and to multivariate interpolation.

[1]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[2]  C. D. Boor,et al.  On multivariate polynomial interpolation , 1990 .

[3]  Ralf Fröberg,et al.  An introduction to Gröbner bases , 1997, Pure and applied mathematics.

[4]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[5]  H. Michael Möller,et al.  Gröbner Bases and Applications: Gröbner Bases and Numerical Analysis , 1998 .

[6]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[7]  Thomas Sauer,et al.  Gröbner bases, H–bases and interpolation , 2000 .

[8]  Thomas Sauer Polynomial Interpolation of Minimal Degree and Grr Obner Bases , 1998 .

[9]  임종인,et al.  Gröbner Bases와 응용 , 1995 .

[10]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[11]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[12]  W. Gröbner,et al.  Moderne Algebraische Geometrie , 1949 .

[13]  C. D. Boor,et al.  The least solution for the polynomial interpolation problem , 1992 .

[14]  D. Kirby THE ALGEBRAIC THEORY OF MODULAR SYSTEMS , 1996 .

[15]  H. M. Möller,et al.  Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems , 1995 .

[16]  Thomas Sauer Gröbner Bases and Applications: Polynomial interpolation of Minimal Degree and Gröbner Bases , 1998 .

[17]  Bruno Buchberger,et al.  The Construction of Multivariate Polynomials with Preassigned Zeros , 1982, EUROCAM.

[18]  F. S. Macaulay Some Properties of Enumeration in the Theory of Modular Systems , 1927 .

[19]  H. Michael Möller,et al.  Mehrdimensionale Hermite-Interpolation und numerische Integration , 1976 .

[20]  T. Sauer Polynomial interpolation of minimal degree , 1997 .

[21]  L. O'carroll AN INTRODUCTION TO GRÖBNER BASES (Graduate Studies in Mathematics 3) , 1996 .

[22]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[23]  H. M. Möller,et al.  New Constructive Methods in Classical Ideal Theory , 1986 .

[24]  H. Michael Möller,et al.  On the Construction of Gröbner Bases Using Syzygies , 1988, J. Symb. Comput..