Comprehensive analysis of alternating current electrokinetics induced motion of colloidal particles in a three-dimensional microfluidic chip

AC electrokinetics is becoming a strategic tool for lab-on-a-chip systems due to its versatility and its high level of integration. The ability to foreseen the behaviour of fluids and particles under non-uniform AC electric fields is important to allow new generations of devices. Though most of studies predicted motion of particles in co-planar electrodes configurations, we explore a pure 3-D AC electrokinetic effect that can open the way to enhance contact-less handling throughout the microchannel. By fabricating 3D microfluidic chips with a bi-layer electrodes configuration where electrodes are patterned on both sides of the microfluidic channel, we present a detailed study of the AC electrokinetic regimes that govern particles motion suspended in different host media subjected to a non-uniform AC electric field that spreads through the cross-section of the microchannel. We simulate and observe the motion of 1, 5, and 10 μm polystyrene particles relative to the electrodes and provide an insight on the c...

[1]  David Issadore,et al.  Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. , 2008, Lab on a chip.

[2]  Jonghyun Oh,et al.  Comprehensive analysis of particle motion under non-uniform AC electric fields in a microchannel. , 2009, Lab on a chip.

[3]  G. Fuhr,et al.  Trapping in AC octode field cages , 2000 .

[4]  V. Studer,et al.  Fabrication of microfluidic devices for AC electrokinetic fluid pumping , 2002 .

[6]  R. Pethig,et al.  Dielectrophoretic Characterisation of Mammalian Cells above 100 MHz , 2011 .

[7]  Joel Voldman,et al.  Dielectrophoretic traps for single-particle patterning. , 2005, Biophysical journal.

[8]  Hywel Morgan,et al.  Negative DEP traps for single cell immobilisation. , 2009, Lab on a chip.

[9]  M. Gordon,et al.  Separation of colloidal nanoparticles using capillary immersion forces , 2006 .

[10]  M.C. Wu,et al.  Light-Actuated AC Electroosmosis for Nanoparticle Manipulation , 2008, Journal of Microelectromechanical Systems.

[11]  H. Morgan,et al.  Ac electrokinetics: a survey of sub-micrometre particle dynamics , 2000 .

[12]  G. Gradl,et al.  A 3-D microelectrode system for handling and caging single cells and particles , 1999 .

[13]  Joel Voldman,et al.  Quantitative modeling of dielectrophoretic traps. , 2006, Lab on a chip.

[14]  R. Pethig Review article-dielectrophoresis: status of the theory, technology, and applications. , 2010, Biomicrofluidics.

[15]  P. Koumoutsakos,et al.  Feature point tracking and trajectory analysis for video imaging in cell biology. , 2005, Journal of structural biology.

[16]  W. M. Arnold,et al.  Particle patterning using fluidics and electric fields , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[17]  H Morgan,et al.  3D focusing of nanoparticles in microfluidic channels. , 2003, IEE proceedings. Nanobiotechnology.

[18]  C. H. Kua,et al.  Dynamic cell fractionation and transportation using moving dielectrophoresis. , 2007, Analytical chemistry.

[19]  C. H. Kua,et al.  Cell motion model for moving dielectrophoresis. , 2008, Analytical chemistry.

[20]  Young-Ho Cho,et al.  A two-dimensional particle focusing channel using the positive dielectrophoresis (PDEP) guided by a dielectric structure between two planar electrodes , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[21]  J. Voldman,et al.  Holding forces of single-particle dielectrophoretic traps. , 2001, Biophysical journal.

[22]  H. Morgan,et al.  Ac electrokinetics: a review of forces in microelectrode structures , 1998 .

[23]  Hughes,et al.  The Dielectrophoretic Behavior of Submicron Latex Spheres: Influence of Surface Conductance. , 1999, Journal of colloid and interface science.

[24]  M. Ohtsu,et al.  A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles , 1995 .

[25]  Hywel Morgan,et al.  Dielectrophoresis of Submicrometer Latex Spheres. 1. Experimental Results , 1999 .

[26]  Emmanuel Picard,et al.  Determination of Clausius–Mossotti factors and surface capacitances for colloidal particles , 2011 .

[27]  D Peyrade,et al.  Dielectrophoretic properties of engineered protein patterned colloidal particles. , 2012, Biomicrofluidics.

[28]  Paschalis Alexandridis,et al.  One‐, two‐, and three‐dimensional organization of colloidal particles using nonuniform alternating current electric fields , 2002, Electrophoresis.

[29]  Dielectrophoretic and AC electroosmotic trapping of DNA: Numerical simulation incorporating fluid dynamics and steric particle effects , 2011 .

[30]  Joel Voldman,et al.  Separation of particles by pulsed dielectrophoresis. , 2009, Lab on a chip.

[31]  H. Du,et al.  A dielectrophoretic barrier-based microsystem for separation of microparticles , 2007 .

[32]  Karan V. I. S. Kaler,et al.  A cost effective, re-configurable electrokinetic microfluidic chip platform , 2007 .

[33]  H. A. Pohl The Motion and Precipitation of Suspensoids in Divergent Electric Fields , 1951 .

[34]  J. Voldman,et al.  A scalable addressable positive-dielectrophoretic cell-sorting array. , 2005, Analytical chemistry.

[35]  T. Honegger,et al.  Design and realization of a microfluidic system for dielectrophoretic colloidal handling , 2009 .

[36]  Dimos Poulikakos,et al.  Electrokinetic framework of dielectrophoretic deposition devices , 2010 .

[37]  H. Morgan,et al.  THE ROLE OF ELECTROHYDRODYNAMIC FORCES IN THE DIELECTROPHORETIC MANIPULATION AND SEPARATION OF PARTICLES , 1999 .

[38]  Hywel Morgan,et al.  High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection. , 2006, Biosensors & bioelectronics.

[39]  X. Wang,et al.  Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation. , 1998, Biophysical journal.

[40]  R. Pethig,et al.  The dielectrophoretic movement and positioning of a biological cell using a three-dimensional grid electrode system , 1998 .

[41]  L. Latu-Romain,et al.  Transparent Multilevel Aligned Electrode Microfluidic Chip for Dielectrophoretic Colloidal Handling , 2010 .

[42]  Ronald Pethig,et al.  Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy. , 2012, Biomicrofluidics.

[43]  Jiehong Wu,et al.  Enhancing microcantilever capability with integrated AC electroosmotic trapping , 2007 .

[44]  M. K. Andrews,et al.  Chaining and dendrite formation of gold particles , 2004 .

[45]  W. Wlodarski,et al.  Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles , 2009 .

[46]  H. Morgan,et al.  The electrokinetic properties of latex particles: comparison of electrophoresis and dielectrophoresis. , 2005, Journal of colloid and interface science.

[47]  T. Honegger,et al.  Moving pulsed dielectrophoresis. , 2013, Lab on a chip.

[48]  T. Honegger,et al.  Selective grafting of proteins on Janus particles: Adsorption and covalent coupling strategies , 2011 .

[49]  Tomoyuki Yasukawa,et al.  Negative dielectrophoretic patterning with colloidal particles and encapsulation into a hydrogel. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[50]  Emmanuel Picard,et al.  Assembly of microparticles by optical trapping with a photonic crystal nanocavity , 2012 .

[51]  M. Stelzle,et al.  Microdevices for manipulation and accumulation of micro‐ and nanoparticles by dielectrophoresis , 2003, Electrophoresis.

[52]  Christian Dusny,et al.  Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments. , 2013, Lab on a chip.

[53]  H. Morgan,et al.  Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws , 2003 .