Toward predictive models of mammalian cells.

Progress in experimental and theoretical biology is likely to provide us with the opportunity to assemble detailed predictive models of mammalian cells. Using a functional format to describe the organization of mammalian cells, we describe current approaches for developing qualitative and quantitative models using data from a variety of experimental sources. Recent developments and applications of graph theory to biological networks are reviewed. The use of these qualitative models to identify the topology of regulatory motifs and functional modules is discussed. Cellular homeostasis and plasticity are interpreted within the framework of balance between regulatory motifs and interactions between modules. From this analysis we identify the need for detailed quantitative models on the basis of the representation of the chemistry underlying the cellular process. The use of deterministic, stochastic, and hybrid models to represent cellular processes is reviewed, and an initial integrated approach for the development of large-scale predictive models of a mammalian cell is presented.

[1]  A. Katchalsky,et al.  Nonequilibrium Thermodynamics in Biophysics , 1965 .

[2]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[3]  I. Prigogine,et al.  NONEQUILIBRIUM PROBLEMS IN BIOLOGICAL PHENOMENA , 1974, Annals of the New York Academy of Sciences.

[4]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[5]  J. Martiel,et al.  Metabolic oscillations in biochemical systems controlled by covalent enzyme modification. , 1981, Biochimie.

[6]  C. Birchmeier,et al.  The terminal RNA stem-loop structure and 80 bp of spacer DNA are required for the formation of 3′ termini of sea urchin H2A mRNA , 1983, Cell.

[7]  R. Weinberg,et al.  The pathway to signal achievement , 1993, Nature.

[8]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[9]  L. Raymond,et al.  Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase , 1993, Nature.

[10]  Pedro Mendes,et al.  GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems , 1993, Comput. Appl. Biosci..

[11]  P. Dent,et al.  Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate. , 1993, Science.

[12]  S. Cook,et al.  Inhibition by cAMP of Ras-dependent activation of Raf. , 1993, Science.

[13]  E. Kandel,et al.  Requirement of a critical period of transcription for induction of a late phase of LTP. , 1994, Science.

[14]  R. Iyengar,et al.  Suppression of Ras-induced transformation of NIH 3T3 cells by activated G alpha s. , 1994, Science.

[15]  L. Hartwell,et al.  Cell cycle control and cancer. , 1994, Science.

[16]  R. Iyengar,et al.  Distinct Characteristics of the Basal Activities of Adenylyl Cyclases 2 and 6 (*) , 1995, The Journal of Biological Chemistry.

[17]  R. Iyengar,et al.  Postsynaptic CAMP pathway gates early LTP in hippocampal CA1 region , 1995, Neuron.

[18]  Ravi Iyengar Gating by Cyclic AMP: Expanded Role for an Old Signaling Pathway , 1996, Science.

[19]  H. Mewes,et al.  Overview of the yeast genome. , 1997, Nature.

[20]  S. Oliver,et al.  Erratum: Overview of the yeast genome , 1997, Nature.

[21]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[22]  R. Iyengar,et al.  Adenylyl cyclase 6 is selectively regulated by protein kinase A phosphorylation in a region involved in Galphas stimulation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Pawson,et al.  Signaling through scaffold, anchoring, and adaptor proteins. , 1997, Science.

[24]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Iyengar,et al.  Identity of adenylyl cyclase isoform determines the rate of cell cycle progression in NIH 3T3 cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Joel R. Stiles,et al.  Monte Carlo simulation of neuro-transmitter release using MCell, a general simulator of cellular physiological processes , 1998 .

[27]  S. Shenolikar,et al.  Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. , 1998, Science.

[28]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[29]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[30]  P. Karp Metabolic databases. , 1998, Trends in biochemical sciences.

[31]  J. Linderman,et al.  Modeling activation and desensitization of G-protein coupled receptors provides insight into ligand efficacy. , 1999, Journal of theoretical biology.

[32]  U. Bhalla,et al.  Emergent properties of networks of biological signaling pathways. , 1999, Science.

[33]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[34]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[35]  U. Bhalla,et al.  Complexity in biological signaling systems. , 1999, Science.

[36]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  H. Westerhoff,et al.  Understanding Glucose Transport by the Bacterial Phosphoenolpyruvate:Glycose Phosphotransferase System on the Basis of Kinetic Measurements in Vitro * , 2000, The Journal of Biological Chemistry.

[38]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[39]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[40]  R. Huganir,et al.  Targeting of PKA to Glutamate Receptors through a MAGUK-AKAP Complex , 2000, Neuron.

[41]  R. Iyengar,et al.  Signaling Networks The Origins of Cellular Multitasking , 2000, Cell.

[42]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[43]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[44]  Ioannis Xenarios,et al.  DIP: the Database of Interacting Proteins , 2000, Nucleic Acids Res..

[45]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[46]  M. Bear,et al.  Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity , 2000, Nature.

[47]  D. Lauffenburger,et al.  Mathematical modeling of epidermal growth factor receptor signaling through the phospholipase C pathway: mechanistic insights and predictions for molecular interventions. , 2000, Biotechnology and bioengineering.

[48]  Guenter Blobel Protein Targeting , 2000, Bioscience reports.

[49]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[50]  G. Blobel Protein Targeting (Nobel Lecture) , 2000, Chembiochem : a European journal of chemical biology.

[51]  U. Bhalla,et al.  Functional modules in biological signalling networks. , 2001, Novartis Foundation symposium.

[52]  Ioannis Xenarios,et al.  DIP: The Database of Interacting Proteins: 2001 update , 2001, Nucleic Acids Res..

[53]  E. Kandel,et al.  Some Forms of cAMP-Mediated Long-Lasting Potentiation Are Associated with Release of BDNF and Nuclear Translocation of Phospho-MAP Kinase , 2001, Neuron.

[54]  Michael Krauthammer,et al.  GENIES: a natural-language processing system for the extraction of molecular pathways from journal articles , 2001, ISMB.

[55]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[56]  S. Michnick,et al.  Visualization of biochemical networks in living cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[58]  L. Loew,et al.  The Virtual Cell: a software environment for computational cell biology. , 2001, Trends in biotechnology.

[59]  S. Strogatz Exploring complex networks , 2001, Nature.

[60]  J. Morrison,et al.  Mitogen-Activated Protein Kinase Regulates Early Phosphorylation and Delayed Expression of Ca2+/Calmodulin-Dependent Protein Kinase II in Long-Term Potentiation , 2001, The Journal of Neuroscience.

[61]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[63]  Ioannis Xenarios,et al.  Mining literature for protein-protein interactions , 2001, Bioinform..

[64]  Temple F. Smith,et al.  Overview of the Alliance for Cellular Signaling , 2002, Nature.

[65]  D. Bray,et al.  Modelling the bacterial chemotaxis receptor complex. , 2002, Novartis Foundation symposium.

[66]  R. Winslow,et al.  An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. , 2002, Biophysical journal.

[67]  Martin Steffen,et al.  Automated modelling of signal transduction networks , 2002, BMC Bioinformatics.

[68]  W. Abraham,et al.  Induction and Experience-Dependent Consolidation of Stable Long-Term Potentiation Lasting Months in the Hippocampus , 2002, The Journal of Neuroscience.

[69]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[70]  T. Graf Differentiation plasticity of hematopoietic cells. , 2002, Blood.

[71]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[72]  B. Kholodenko,et al.  Modular response analysis of cellular regulatory networks. , 2002, Journal of theoretical biology.

[73]  Prahlad T. Ram,et al.  MAP Kinase Phosphatase As a Locus of Flexibility in a Mitogen-Activated Protein Kinase Signaling Network , 2002, Science.

[74]  D. Botstein,et al.  Expression array technology in the diagnosis and treatment of breast cancer. , 2002, Molecular interventions.

[75]  B. Barrell,et al.  The genome sequence of Schizosaccharomyces pombe , 2002, Nature.

[76]  N. Gough Science's Signal Transduction Knowledge Environment , 2002 .

[77]  B. Chait,et al.  Proteomic analysis of the mammalian nuclear pore complex , 2002, The Journal of cell biology.

[78]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[79]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[80]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[81]  N. Gough Science's signal transduction knowledge environment: the connections maps database. , 2002, Annals of the New York Academy of Sciences.

[82]  Susumu Goto,et al.  The KEGG databases at GenomeNet , 2002, Nucleic Acids Res..

[83]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[84]  William H. Majoros,et al.  A Comparison of Whole-Genome Shotgun-Derived Mouse Chromosome 16 and the Human Genome , 2002, Science.

[85]  E. Ott,et al.  Evolving networks with multispecies nodes and spread in the number of initial links. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  L. Loew,et al.  Systems Analysis of Ran Transport , 2002, Science.

[87]  Shankar Subramaniam,et al.  The Molecule Pages database , 2002, Nature.

[88]  G. Caldarelli,et al.  Cycles structure and local ordering in complex networks , 2002, cond-mat/0212026.

[89]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[90]  Hongqing Guo,et al.  Single-Cell Microarray Analysis in Hippocampus CA1: Demonstration and Validation of Cellular Heterogeneity , 2003, The Journal of Neuroscience.

[91]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[92]  E. Lander,et al.  A molecular signature of metastasis in primary solid tumors , 2003, Nature Genetics.

[93]  Sergei Egorov,et al.  Pathway studio - the analysis and navigation of molecular networks , 2003, Bioinform..

[94]  L. Loew,et al.  Quantitative cell biology with the Virtual Cell. , 2003, Trends in cell biology.

[95]  D. Bu,et al.  Topological structure analysis of the protein-protein interaction network in budding yeast. , 2003, Nucleic acids research.

[96]  Marjan S. Bolouri,et al.  Integrated Analysis of Protein Composition, Tissue Diversity, and Gene Regulation in Mouse Mitochondria , 2003, Cell.

[97]  Lili X. Peng,et al.  A High-throughput Quantitative Multiplex Kinase Assay for Monitoring Information Flow in Signaling Networks , 2003, Molecular & Cellular Proteomics.

[98]  A. Levchenko Dynamical and integrative cell signaling: challenges for the new biology , 2003, Biotechnology and bioengineering.

[99]  Daniel B. Forger,et al.  A detailed predictive model of the mammalian circadian clock , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[100]  A. Arkin,et al.  Motifs, modules and games in bacteria. , 2003, Current opinion in microbiology.

[101]  Hanno Steen,et al.  Development of human protein reference database as an initial platform for approaching systems biology in humans. , 2003, Genome research.

[102]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[103]  R. Solé,et al.  Evolving protein interaction networks through gene duplication. , 2003, Journal of theoretical biology.

[104]  R. Huganir,et al.  Glutamate Receptor Subunit 2 Serine 880 Phosphorylation Modulates Synaptic Transmission and Mediates Plasticity in CA1 Pyramidal Cells , 2003, The Journal of Neuroscience.

[105]  E. Levanon,et al.  Preferential attachment in the protein network evolution. , 2003, Physical review letters.

[106]  D. Watts,et al.  An Experimental Study of Search in Global Social Networks , 2003, Science.

[107]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[108]  U. Bhalla Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. , 2004, Biophysical journal.

[109]  L. Loew,et al.  A wave of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog, Xenopus laevis: theoretical and experimental support. , 2004, Cell calcium.

[110]  G. Casari,et al.  A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. , 2004, Nature cell biology.

[111]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[112]  Sharat Jacob Vayttaden,et al.  Developing Complex Signaling Models Using GENESIS/Kinetikit , 2004, Science's STKE.

[113]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[114]  V. Thorsson,et al.  Integrated Genomic and Proteomic Analyses of Gene Expression in Mammalian Cells*S , 2004, Molecular & Cellular Proteomics.

[115]  Ravi Iyengar,et al.  Quantitative Information Management for the Biochemical Computation of Cellular Networks , 2004, Science's STKE.

[116]  Peter Donnelly,et al.  Superfamilies of Evolved and Designed Networks , 2004 .

[117]  Sarel J Fleishman,et al.  Comment on "Network Motifs: Simple Building Blocks of Complex Networks" and "Superfamilies of Evolved and Designed Networks" , 2004, Science.

[118]  B. Kholodenko,et al.  Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades , 2004, The Journal of cell biology.

[119]  N. Perrimon,et al.  Genome-Wide RNAi Analysis of Growth and Viability in Drosophila Cells , 2004, Science.

[120]  Chen-Ping Zhu,et al.  Scaling of directed dynamical small-world networks with random responses. , 2003, Physical review letters.

[121]  R. Milo,et al.  Response to Comment on "Network Motifs: Simple Building Blocks of Complex Networks" and "Superfamilies of Evolved and Designed Networks" , 2004, Science.

[122]  Upinder S. Bhalla,et al.  Adaptive stochastic-deterministic chemical kinetic simulations , 2004, Bioinform..

[123]  Réka Albert,et al.  Conserved network motifs allow protein-protein interaction prediction , 2004, Bioinform..

[124]  R. Pastor-Satorras,et al.  Structure of cycles and local ordering in complex networks , 2004 .

[125]  U. Bhalla Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. , 2004, Biophysical journal.

[126]  Ash A. Alizadeh,et al.  Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. , 2004, The New England journal of medicine.

[127]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[128]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[129]  E. Wimmer,et al.  MAP Kinase Phosphatase As a Locus of Flexibility in a Mitogen-Activated Protein Kinase Signaling Network , 2022 .