Physically-based Simulation of Cuts in Deformable Bodies: A Survey

Virtual cutting of deformable bodies has been an important and active research topic in physically-based simulation for more than a decade. A particular challenge in virtual cutting is the robust and efficient incorporation of cuts into an accurate computational model that is used for the simulation of the deformable body. This report presents a coherent summary of the state-of-the-art in virtual cutting of deformable bodies, focusing on the distinct geometrical and topological representations of the deformable body, as well as the specific numerical discretizations of the governing equations of motion. In particular, we discuss virtual cutting based on tetrahedral, hexahedral, and polyhedral meshes, in combination with standard, polyhedral, composite, and extended finite element discretizations. A separate section is devoted to meshfree methods. The report is complemented with an application study to assess the performance of virtual cutting simulators.

[1]  Christian Duriez,et al.  GPU-based real-time soft tissue deformation with cutting and haptic feedback. , 2010, Progress in biophysics and molecular biology.

[2]  Han-Wen Nienhuys,et al.  Combining finite element deformation with cutting for surgery simulations , 2000, Eurographics.

[3]  Stephane Cotin,et al.  A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation , 2000, The Visual Computer.

[4]  Mark A Fleming,et al.  Continuous meshless approximations for nonconvex bodies by diffraction and transparency , 1996 .

[5]  David Harmon,et al.  Asynchronous contact mechanics , 2009, SIGGRAPH 2009.

[6]  M. Bro-Nielsen,et al.  Finite element modeling in surgery simulation , 1998, Proc. IEEE.

[7]  Markus H. Gross,et al.  A Finite Element Method on Convex Polyhedra , 2007, Comput. Graph. Forum.

[8]  Matthias Harders,et al.  Robust Interactive Collision Handling between Tools and Thin Volumetric Objects , 2012, IEEE Transactions on Visualization and Computer Graphics.

[9]  Cynthia Bruyns,et al.  Interactive cutting of 3D surface meshes , 2001, Comput. Graph..

[10]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[11]  Lars Ole Schwen,et al.  Composite Finite Elements for Complicated Microstructures , 2006 .

[12]  Markus H. Gross,et al.  Interactive Cuts through 3‐Dimensional Soft Tissue , 1999, Comput. Graph. Forum.

[13]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[14]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[15]  Pheng-Ann Heng,et al.  An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation , 2005, The Visual Computer.

[16]  Terry M. Peters,et al.  Adaptive finite element technique for cutting in surgical simulation (Cum Laude Poster Award) , 2005, SPIE Medical Imaging.

[17]  Allison M. Okamura,et al.  Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review , 2008, PRESENCE: Teleoperators and Virtual Environments.

[18]  Martin Rumpf,et al.  Finite Element Simulation of Bone Microstructures , 2007 .

[19]  Rüdiger Westermann,et al.  A Hexahedral Multigrid Approach for Simulating Cuts in Deformable Objects , 2011, IEEE Transactions on Visualization and Computer Graphics.

[20]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[21]  Ronald Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, SIGGRAPH 2004.

[22]  Wei Jin,et al.  On Some Recent Advances in Multimodal Surgery Simulation: A Hybrid Approach to Surgical Cutting and the Use of Video Images for Enhanced Realism , 2007, PRESENCE: Teleoperators and Virtual Environments.

[23]  Ronald Fedkiw,et al.  Arbitrary cutting of deformable tetrahedralized objects , 2007, SCA '07.

[24]  Rüdiger Westermann,et al.  Workshop on Virtual Reality Interaction and Physical Simulation (2005) a Multigrid Framework for Real-time Simulation of Deformable Volumes , 2022 .

[25]  Lenka Jerábková,et al.  Stable Cutting of Deformable Objects in Virtual Environments Using XFEM , 2009, IEEE Computer Graphics and Applications.

[26]  M. Gross,et al.  Flexible simulation of deformable models using discontinuous Galerkin FEM , 2008, SCA 2008.

[27]  George M. Turkiyyah,et al.  A physically-based framework for real-time haptic cutting and interaction with 3D continuum models , 2007, Symposium on Solid and Physical Modeling.

[28]  L. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[29]  Han-Wen Nienhuys,et al.  A Surgery Simulation Supporting Cuts and Finite Element Deformation , 2001, MICCAI.

[30]  M. Rumpf,et al.  Composite finite elements for 3D image based computing , 2009 .

[31]  Jun Wu,et al.  Interactive Residual Stress Modeling for Soft Tissue Simulation , 2012, VCBM.

[32]  Sébastien Ourselin,et al.  Topology modification for surgical simulation using precomputed finite element models based on linear elasticity. , 2010, Progress in biophysics and molecular biology.

[33]  Markus H. Gross,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2006) Fast Arbitrary Splitting of Deforming Objects , 2022 .

[34]  Jun Wu,et al.  Real-Time Haptic Cutting of High-Resolution Soft Tissues , 2014, MMVR.

[35]  Morten Bro-Nielsen,et al.  Real‐time Volumetric Deformable Models for Surgery Simulation using Finite Elements and Condensation , 1996, Comput. Graph. Forum.

[36]  Charlie C. L. Wang,et al.  Toward Stable and Realistic Haptic Interaction for Tooth Preparation Simulation , 2010, J. Comput. Inf. Sci. Eng..

[37]  Jérémie Allard,et al.  Volumetric modeling and interactive cutting of deformable bodies. , 2010, Progress in biophysics and molecular biology.

[38]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[39]  Simon Wildermuth,et al.  A survey of interactive mesh-cutting techniques and a new method for implementing generalized interactive mesh cutting using virtual tools , 2002, Comput. Animat. Virtual Worlds.

[40]  H. Matthies,et al.  Classification and Overview of Meshfree Methods , 2004 .

[41]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[42]  I. Babuska,et al.  The generalized finite element method , 2001 .

[43]  Dinesh Manocha,et al.  VolCCD: Fast continuous collision culling between deforming volume meshes , 2011, TOGS.

[44]  Christian Duriez,et al.  Real-time simulation of contact and cutting of heterogeneous soft-tissues , 2014, Medical Image Anal..

[45]  Takeo Kanade,et al.  Modifying Soft Tissue Models: Progressive Cutting with Minimal New Element Creation , 2000, MICCAI.

[46]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[47]  Jun Wu,et al.  Interactive High-Resolution Boundary Surfaces for Deformable Bodies with Changing Topology , 2011, VRIPHYS.

[48]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[49]  Eitan Grinspun,et al.  Enrichment textures for detailed cutting of shells , 2009, ACM Trans. Graph..

[50]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2005, Eurographics.

[51]  Gábor Székely,et al.  Hybrid Cutting of Deformable Solids , 2006, IEEE Virtual Reality Conference (VR 2006).

[52]  Stefan A. Sauter,et al.  Composite Finite Elements for Elliptic Boundary Value Problems with Discontinuous Coefficients , 2006, Computing.

[53]  James F. O'Brien,et al.  Updated sparse cholesky factors for corotational elastodynamics , 2012, TOGS.

[54]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[55]  C. Bajaj,et al.  3 D finite element meshing from imaging data q , 2005 .

[56]  Jaydev P. Desai,et al.  Modeling Soft-Tissue Deformation Prior to Cutting for Surgical Simulation: Finite Element Analysis and Study of Cutting Parameters , 2007, IEEE Transactions on Biomedical Engineering.

[57]  Mathieu Desbrun,et al.  Numerical coarsening of inhomogeneous elastic materials , 2009, SIGGRAPH 2009.

[58]  S. F. Frisken-Gibson Using linked volumes to model object collisions, deformation, cutting, carving, and joining , 1999 .

[59]  K. Bathe Finite Element Procedures , 1995 .

[60]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[61]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[62]  Markus H. Gross,et al.  Polyhedral Finite Elements Using Harmonic Basis Functions , 2008, Comput. Graph. Forum.

[63]  Jun Wu,et al.  Efficient collision detection for composite finite element simulation of cuts in deformable bodies , 2013, The Visual Computer.

[64]  Markus H. Gross,et al.  Interactive simulation of surgical cuts , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[65]  Ronald Fedkiw,et al.  Adaptive physics based tetrahedral mesh generation using level sets , 2005, Engineering with Computers.

[66]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[67]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[68]  Jay D. Humphrey,et al.  Review Paper: Continuum biomechanics of soft biological tissues , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[69]  Paolo Cignoni,et al.  A Multiresolution Model for Soft Objects Supporting Interactive Cuts and Lacerations , 2000, Comput. Graph. Forum.

[70]  James F. O'Brien,et al.  Interactive simulation of surgical needle insertion and steering , 2009, ACM Trans. Graph..

[71]  Gabriel Zachmann,et al.  Collision Detection for Deformable Objects , 2004, Comput. Graph. Forum.

[72]  Markus H. Gross,et al.  A state machine for real-time cutting of tetrahedral meshes , 2004, Graph. Model..

[73]  Mathieu Desbrun,et al.  Animating soft substances with implicit surfaces , 1995, SIGGRAPH.

[74]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[75]  Elmar Eisemann,et al.  Single-pass GPU solid voxelization for real-time applications , 2008, Graphics Interface.

[76]  Rüdiger Westermann,et al.  Computational Steering for Patient-Specific Implant Planning in Orthopedics , 2008, VCBM.

[77]  Matthias Harders,et al.  Robust interactive cutting based on an adaptive octree simulation mesh , 2011, The Visual Computer.

[78]  Rüdiger Westermann,et al.  A real-time multigrid finite hexahedra method for elasticity simulation using CUDA , 2011, Simul. Model. Pract. Theory.

[79]  P. Stergiopoulos,et al.  A framework for the haptic rendering of the human hand , 2003, 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings..

[80]  Ahmad H. Nasri,et al.  Mesh cutting during real-time physical simulation , 2011, Comput. Aided Des..

[81]  Paolo Cignoni,et al.  Splitting cubes: a fast and robust technique for virtual cutting , 2009, The Visual Computer.

[82]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[83]  Christian Duriez,et al.  Volume contact constraints at arbitrary resolution , 2010, ACM Trans. Graph..

[84]  Hong Qin,et al.  Meshless thin-shell simulation based on global conformal parameterization , 2006, IEEE Transactions on Visualization and Computer Graphics.