Application of multiplatform, multispectral remote sensors for mapping intertidal macroalgae: A comparative approach

[1]  N. Campbell,et al.  Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification , 1992 .

[2]  John A. Richards,et al.  Efficient maximum likelihood classification for imaging spectrometer data sets , 1994, IEEE Trans. Geosci. Remote. Sens..

[3]  Robert A. Schowengerdt,et al.  A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification , 1995, IEEE Trans. Geosci. Remote. Sens..

[4]  S. K. McFeeters The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features , 1996 .

[5]  D. Stengel,et al.  Morphology and in situ growth rates of plants of Ascophyllum nodosum (Phaeophyta) from different shore levels and responses of plants to vertical transplantation , 1997 .

[6]  D. Stengel,et al.  Seasonal variation in the pigment content and photosynthesis of different thallus regions of Ascophyllum nodosum (Fucales, Phaeophyta) in relation to position in the canopy , 1998 .

[7]  E. Milton,et al.  The use of the empirical line method to calibrate remotely sensed data to reflectance , 1999 .

[8]  A. Jacobsen SPECTRAL IDENTIFICATION OF DANISH GRASSLAND CLASSES RELATED TO MANAGEMENT AND PLANT SPECIES COMPOSITION , 1999 .

[9]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[10]  Lynn M. Resler Remote Sensing and Image Analysis: 4th Edition. T.M. Lillesand and R.W. Kiefer. John Wiley and Sons, New York, 2000. 736 pp. ISBN: 0471255157 , 2002 .

[11]  J. Kerr,et al.  From space to species: ecological applications for remote sensing , 2003 .

[12]  Touria Bajjouk,et al.  Application of airborne imaging spectrometry system data to intertidal seaweed classification and mapping , 1996, Hydrobiologia.

[13]  Using high spatial resolution hyperspectral imagery to map intertidal habitat structure in Hood Canal, Washington, U.S.A. , 2004 .

[14]  Robert L. Vadas, Sr.,et al.  Biomass and Productivity of Intertidal Rockweeds (Ascophyllum nodosum LeJolis) in Cobscook Bay , 2004 .

[15]  S. Franklin,et al.  Remote sensing for large-area habitat mapping , 2005 .

[16]  Kidiyo Kpalma,et al.  An automatic image registration for applications in remote sensing , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[17]  S. Silvestri,et al.  Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing , 2006 .

[18]  H. Su,et al.  Evaluation of eelgrass beds mapping using a high-resolution airborne multispectral scanner , 2006 .

[19]  Hanqiu Xu Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery , 2006 .

[20]  T. Kutser,et al.  Spectral library of macroalgae and benthic substrates in Estonian coastal waters , 2006, Proceedings of the Estonian Academy of Sciences. Biology. Ecology.

[21]  M. Stekoll,et al.  A remote sensing approach to estimating harvestable kelp biomass , 2006, Journal of Applied Phycology.

[22]  Mark P. Johnson,et al.  Limpet grazing and loss of Ascophyllum nodosum canopies on decadal time scales , 2007 .

[23]  Benjamin D. Hennig,et al.  Hyperspectral remote sensing and analysis of intertidal zones: A contribution to monitor coastal biodiversity , 2007 .

[24]  L. Airoldi,et al.  Recovering a lost baseline: missing kelp forests from a metropolitan coast , 2008 .

[25]  D. Siegel,et al.  Scaling giant kelp field measurements to regional scales using satellite observations , 2010 .

[26]  George P. Petropoulos,et al.  A Comparison of Spectral Angle Mapper and Artificial Neural Network Classifiers Combined with Landsat TM Imagery Analysis for Obtaining Burnt Area Mapping , 2010, Sensors.

[27]  A. Rango,et al.  Image Processing and Classification Procedures for Analysis of Sub-decimeter Imagery Acquired with an Unmanned Aircraft over Arid Rangelands , 2011 .

[28]  Stuart R. Phinn,et al.  Integrating Quickbird Multi-Spectral Satellite and Field Data: Mapping Bathymetry, Seagrass Cover, Seagrass Species and Change in Moreton Bay, Australia in 2004 and 2007 , 2011, Remote. Sens..

[29]  Yangquan Chen,et al.  Using a multispectral autonomous unmanned aerial remote sensing platform (AggieAir) for riparian and wetlands applications , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[30]  Juan Freire,et al.  Remote sensing with SPOT-4 for mapping kelp forests in turbid waters on the south European Atlantic shelf , 2011 .

[31]  J. Hicke,et al.  Evaluating the potential of multispectral imagery to map multiple stages of tree mortality , 2011 .

[32]  A. Lechner,et al.  CHARACTERISING UPLAND SWAMPS USING OBJECT-BASED CLASSIFICATION METHODS AND HYPER-SPATIAL RESOLUTION IMAGERY DERIVED FROM AN UNMANNED AERIAL VEHICLE , 2012 .

[33]  T. Kutser,et al.  Assessment of AHS (Airborne Hyperspectral Scanner) sensor to map macroalgal communities on the Ría de vigo and Ría de Aldán coast (NW Spain) , 2012 .

[34]  Natascha Oppelt,et al.  Hyperspectral classification approaches for intertidal macroalgae habitat mapping: a case study in Heligoland , 2012 .

[35]  Karen Anderson,et al.  Lightweight unmanned aerial vehicles will revolutionize spatial ecology , 2013 .

[36]  T. Kutser,et al.  Assessment of the hyperspectral sensor CASI-2 for macroalgal discrimination on the Ría de Vigo coast (NW Spain) using field spectroscopy and modelled spectral libraries , 2013 .

[37]  Jan G. P. W. Clevers,et al.  Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3 , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[38]  I. Colomina,et al.  Unmanned aerial systems for photogrammetry and remote sensing: A review , 2014 .

[39]  Jonne Kotta,et al.  In-air spectral signatures of the Baltic Sea macrophytes and their statistical separability , 2014 .

[40]  Piero Toscano,et al.  Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture , 2015, Remote. Sens..

[41]  E. Malta,et al.  European seaweeds under pressure: Consequences for communities and ecosystem functioning , 2015 .

[42]  Brandon J. Russell,et al.  Hyperspectral discrimination of floating mats of seagrass wrack and the macroalgae Sargassum in coastal waters of Greater Florida Bay using airborne remote sensing , 2015 .

[43]  Marco Dubbini,et al.  Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images , 2015, Remote. Sens..

[44]  P. Thenkabail,et al.  Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation , 2015 .

[45]  D. Siegel,et al.  Remote monitoring of giant kelp biomass and physiological condition: An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) mission , 2015 .

[46]  Brendan F. Kohrn,et al.  Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology , 2016, Applications in Plant Sciences.

[47]  Antoine M. Dujon,et al.  Noninvasive unmanned aerial vehicle provides estimates of the energetic cost of reproduction in humpback whales , 2016 .

[48]  S. Wich,et al.  A preliminary assessment of using conservation drones for Sumatran orang-utan (Pongo abelii) distribution and density , 2016 .

[49]  I. Jonsen,et al.  An Economical Custom-Built Drone for Assessing Whale Health , 2017, Front. Mar. Sci..

[50]  Sammy A. Perdomo,et al.  RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields , 2018, Precision Agriculture.

[51]  Blake M. Allan,et al.  Applications of unmanned aerial vehicles in intertidal reef monitoring , 2017, Scientific Reports.

[52]  Raul Morais,et al.  Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry , 2017, Remote. Sens..

[53]  Giorgos Mallinis,et al.  On the Use of Unmanned Aerial Systems for Environmental Monitoring , 2018, Remote. Sens..

[54]  Jorge Torres-Sánchez,et al.  An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery , 2018, Remote. Sens..

[55]  J. Shutler,et al.  Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone , 2018 .

[56]  Doreen S. Boyd,et al.  UAVs in pursuit of plant conservation - Real world experiences , 2017, Ecol. Informatics.

[57]  Jennifer J. Swenson,et al.  Integrating Drone Imagery into High Resolution Satellite Remote Sensing Assessments of Estuarine Environments , 2018, Remote. Sens..

[58]  Matthew F. McCabe,et al.  Using Multi-Spectral UAV Imagery to Extract Tree Crop Structural Properties and Assess Pruning Effects , 2018, Remote. Sens..

[59]  Yong He,et al.  Recognising weeds in a maize crop using a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery , 2018, Biosystems Engineering.

[60]  Daniele Ventura,et al.  Mapping and Classification of Ecologically Sensitive Marine Habitats Using Unmanned Aerial Vehicle (UAV) Imagery and Object-Based Image Analysis (OBIA) , 2018, Remote. Sens..

[61]  Elisabeth A. Addink,et al.  Multitemporal Classification of River Floodplain Vegetation Using Time Series of UAV Images , 2018, Remote. Sens..

[62]  Christophe Delacourt,et al.  Direct Georeferencing of a Pushbroom, Lightweight Hyperspectral System for Mini-UAV Applications , 2018, Remote. Sens..

[63]  Jonathan P. Dash,et al.  UAV Multispectral Imagery Can Complement Satellite Data for Monitoring Forest Health , 2018, Remote. Sens..

[64]  Christophe Sannier,et al.  The effects of imperfect reference data on remote sensing-assisted estimators of land cover class proportions , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[65]  I. Tittley,et al.  A comparison of multispectral aerial and satellite imagery for mapping intertidal seaweed communities , 2018 .

[66]  Junichi Kurihara,et al.  A novel approach for vegetation classification using UAV-based hyperspectral imaging , 2018, Comput. Electron. Agric..

[67]  B. Kelaher,et al.  The potential for unmanned aerial vehicles (UAVs) to conduct marine fauna surveys in place of manned aircraft , 2018 .

[68]  Louise Willemen,et al.  Machine Learning Using Hyperspectral Data Inaccurately Predicts Plant Traits Under Spatial Dependency , 2018, Remote. Sens..

[69]  S. Longmore,et al.  Successful observation of orangutans in the wild with thermal-equipped drones , 2019, Journal of Unmanned Vehicle Systems.

[70]  Isla H Myers-Smith,et al.  Vegetation monitoring using multispectral sensors – best practices and lessons learned from high latitudes , 2018, bioRxiv.

[71]  Kyle C. Cavanaugh,et al.  Mapping Coastal Wetland Biomass from High Resolution Unmanned Aerial Vehicle (UAV) Imagery , 2019, Remote. Sens..

[72]  J. Paneque-Gálvez,et al.  The Global Emergence of Community Drones (2012–2017) , 2019, Drones.

[73]  A. Pellegrinelli,et al.  Multispectral UAV monitoring of submerged seaweed in shallow water , 2019, Applied Geomatics.

[74]  J. Conn,et al.  High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery , 2019, PLoS neglected tropical diseases.

[75]  L. Lautz,et al.  Sub-metre mapping of surface soil moisture in proglacial valleys of the tropical Andes using a multispectral unmanned aerial vehicle , 2019, Remote Sensing of Environment.

[76]  Timothy McCarthy,et al.  Evaluation of Grass Quality under Different Soil Management Scenarios Using Remote Sensing Techniques , 2019, Remote. Sens..

[77]  Ian Hawes,et al.  Unmanned Aerial Vehicles (UAVs) for Monitoring Macroalgal Biodiversity: Comparison of RGB and Multispectral Imaging Sensors for Biodiversity Assessments , 2019, Remote. Sens..

[78]  David W Johnston,et al.  Unoccupied Aircraft Systems in Marine Science and Conservation. , 2019, Annual review of marine science.

[79]  D. Siegel,et al.  Three decades of variability in California's giant kelp forests from the Landsat satellites , 2020 .