About Chaotic Dynamics in the Twisted Horseshoe Map
暂无分享,去创建一个
[1] S. Smale. Differentiable dynamical systems , 1967 .
[2] D. Stoffer,et al. On the Definition of Chaos , 1989 .
[3] Semi-hyperbolicity and bi-shadowing in nonautonomous difference equations with Lipschitz mappings , 2008 .
[4] R. Srzednicki,et al. A GEOMETRIC METHOD FOR DETECTING CHAOTIC DYNAMICS , 1997 .
[5] Eduardo Liz,et al. Chaos in Discrete Structured Population Models , 2012, SIAM J. Appl. Dyn. Syst..
[6] Roman Srzednicki. A generalization of the Lefschetz fixed point theorem and detection of chaos , 1999 .
[7] Keith Burns,et al. The Sharkovsky Theorem: A Natural Direct Proof , 2011, Am. Math. Mon..
[8] Peter E. Kloeden,et al. Chaotic difference equations in Rn , 1981 .
[9] James A. Yorke,et al. A Chaos Lemma , 2001, The American mathematical monthly.
[10] M. Pireddu. Chaotic dynamics in three dimensions: a topological proof for a triopoly game model , 2013, 1301.7556.
[11] R M May,et al. Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos , 1974, Science.
[12] S. Smale,et al. Finding a horseshoe on the beaches of Rio , 1998 .
[13] Piotr Zgliczyński,et al. Fixed point index for iterations of maps, topological horseshoe and chaos , 1996 .
[14] P. Kloeden,et al. Beyond the Li-Yorke Definition of Chaos , 2006 .
[15] D. Saari,et al. Stable and Random Motions in Dynamical Systems , 1975 .
[16] J. Yorke,et al. Period Three Implies Chaos , 1975 .
[17] J. Guckenheimer,et al. The dynamics of density dependent population models , 1977, Journal of mathematical biology.
[18] F. Zanolin,et al. Horseshoes in 3D equations with applications to Lotka–Volterra systems , 2015 .
[19] Marian Gidea,et al. Covering relations for multidimensional dynamical systems , 2004 .
[20] H. Weiss,et al. A geometric criterion for positive topological entropy , 1995 .
[21] Piotr Zgliczyński. On periodic points for systems of weakly coupled 1-dim maps ☆ , 2001 .
[22] Robert M. May,et al. Simple mathematical models with very complicated dynamics , 1976, Nature.
[23] H. Poincaré,et al. Les méthodes nouvelles de la mécanique céleste , 1899 .
[24] François Blanchard,et al. On Li-Yorke pairs , 2002, Journal für die reine und angewandte Mathematik (Crelles Journal).
[25] P. Zgliczyński. Sharkovskii's theorem for multidimensional perturbations of one-dimensional maps , 1999, Ergodic Theory and Dynamical Systems.
[26] Giuseppe Cian. Some remarks on topological horseshoes and applications , 2014 .
[27] Peter E. Kloeden,et al. Li–Yorke chaos in higher dimensions: a review , 2006 .
[28] S. Kolyada,et al. LI-Yorke sensitivity and other concepts of chaos , 2004 .
[29] Marina Pireddu,et al. Chaotic Dynamics for Maps in One and Two Dimensions: a Geometrical Method and Applications to Economics , 2009, Int. J. Bifurc. Chaos.