A Review on State Complexity of Individual Operations

The state complexity of a regular language is the number of states of its minimal determinitisc finite automaton. The complexity of a language operation is the complexity of the resulting language seen as a function of the complexities of the operation arguments. In this report we review some of the results of state complexity of individual operations for regular and some subregular languages. 1 State Complexity and Nondeterministic State Complexity The state complexity of a regular language L, sc(L), is the number of states of its minimal DFA. The nondeterministic state complexity of a regular language L, nsc(L), is the number of states of a minimal NFA that accepts L. Since a DFA is in particular an NFA, for any regular language L one has sc(L) ≤ nsc(L). It is well known that anym-state NFA can be converted, via the subset construction, in an equivalent DFA with at most 2 states [116] (we call this conversion determination). Thus, sc(L) ≤ 2. To show that (i) 0 1 2 · · · m− 2 m− 1 a b a, b a, b a, b a, b

[1]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[2]  Richard Edwin Stearns,et al.  Regularity Preserving Modifications of Regular Expressions , 1963, Inf. Control..

[3]  Micha A. Perles,et al.  The Theory of Definite Automata , 1963, IEEE Trans. Electron. Comput..

[4]  Janusz A. Brzozowski,et al.  Derivatives of Regular Expressions , 1964, JACM.

[5]  Bezalel Peleg,et al.  Ultimate-Definite and Symmetric-Definite Events and Automata , 1965, JACM.

[6]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[7]  B. G. Mirkin,et al.  On dual automata , 1966 .

[8]  L. H. Haines On free monoids partially ordered by embedding , 1969 .

[9]  I. N. Sneddon,et al.  Theory Of Automata , 1969 .

[10]  J. Conway Regular algebra and finite machines , 1971 .

[11]  A. R. Meyer,et al.  Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.

[12]  FRANK R. MOORE,et al.  On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata , 1971, IEEE Transactions on Computers.

[13]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[14]  Gabriel Thierrin Convex Languages , 1972, ICALP.

[15]  Lawrence T. Kou,et al.  Multiple-Entry Finite Automata , 1974, J. Comput. Syst. Sci..

[16]  Robert McNaughton,et al.  Regularity-Preserving Relations , 1976, Theor. Comput. Sci..

[17]  William J. Sakoda,et al.  Nondeterminism and the size of two way finite automata , 1978, STOC.

[18]  H. Shyr Free monoids and languages , 1979 .

[19]  Ernst L. Leiss,et al.  Succint Representation of Regular Languages by Boolean Automata , 1981, Theor. Comput. Sci..

[20]  Ernst L. Leiss Succinct Representation of Regular Languages by Boolean Automata II , 1985, Theor. Comput. Sci..

[21]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[22]  Oscar H. Ibarra,et al.  Relating the Type of Ambiguity of Finite Automata to the Succinctness of Their Representation , 1989, SIAM J. Comput..

[23]  A. Luca,et al.  Some combinatorial properties of factorial languages , 1990 .

[24]  B. Ravikumar,et al.  Some applications of a technique of Sakoda and Sipser , 1990, SIGA.

[25]  Tao Jiang,et al.  A Note on the Space Complexity of Some Decision Problems for Finite Automata , 1991, Inf. Process. Lett..

[26]  Jean-Camille Birget Intersection of regular languages and state complexity , 1991, SGAR.

[27]  Sheng Yu,et al.  On the state complexity of intersection of regular languages , 1991, SIGA.

[28]  Dominique Revuz,et al.  Minimisation of Acyclic Deterministic Automata in Linear Time , 1992, Theor. Comput. Sci..

[29]  Jean-Camille Birget,et al.  Partial Orders on Words, Minimal Elements of Regular Languages and State Complexity , 1993, Theor. Comput. Sci..

[30]  Sheng Yu,et al.  The State Complexities of Some Basic Operations on Regular Languages , 1994, Theor. Comput. Sci..

[31]  Jeffrey Shallit,et al.  A Lower Bound Technique for the Size of Nondeterministic Finite Automata , 1996, Inf. Process. Lett..

[32]  Jean-Camille Birget The State Complexity of \Sigma * L and its Connection with Temporal Logic , 1996, Inf. Process. Lett..

[33]  Sheng Yu,et al.  NFA to DFA Transformation for Finite Languages over Arbitrary Alphabets , 1998, J. Autom. Lang. Comb..

[34]  Yahiko Kambayashi,et al.  Tight bounds on the number of states of DFAs that are equivalent to n-state NFAs , 2000, Theor. Comput. Sci..

[35]  Juraj Hromkovic,et al.  Communication Complexity and Parallel Computing , 1997, Texts in Theoretical Computer Science An EATCS Series.

[36]  Carlo Mereghetti,et al.  Optimal Simulations Between Unary Automata , 1998, STACS.

[37]  Grzegorz Rozenberg,et al.  Shuffle on Trajectories: Syntactic Constraints , 1998, Theor. Comput. Sci..

[38]  George Anton Kiraz,et al.  Compressed Storage of Sparse Finite-State Transducers , 1999, WIA.

[39]  Cyril Nicaud,et al.  Average State Complexity of Operations on Unary Automata , 1999, MFCS.

[40]  Karel Culik,et al.  State Complexity of Basic Operations on Finite Languages , 1999, WIA.

[41]  Aldo de Luca,et al.  Finiteness and Regularity in Semigroups and Formal Languages , 1999, Monographs in Theoretical Computer Science An EATCS Series.

[42]  Giovanni Pighizzini Unary Language Concatenation and Its State Complexity , 2000, CIAA.

[43]  Jeffrey Shallit State Complexity and Jacobsthal's Function , 2000, CIAA.

[44]  Lila Kari,et al.  Shuffle and scattered deletion closure of languages , 2000, Theor. Comput. Sci..

[45]  Mike Paterson,et al.  A Family of NFA's Which Need 2n -alpha Deterministic States , 2000, MFCS.

[46]  Cyril Nicaud,et al.  Etude du comportement en moyenne des automates finis et des langages rationnels , 2000 .

[47]  Sheng Yu,et al.  State Complexity of Regular Languages , 2001, J. Autom. Lang. Comb..

[48]  Sheng Yu,et al.  On the State Complexity of k-Entry Deterministic Finite Automata , 2001, J. Autom. Lang. Comb..

[49]  Galina Jirásková Note on Minimal Finite Automata , 2001, MFCS.

[50]  Sheng Yu,et al.  Minimal cover-automata for finite languages , 2001, Theor. Comput. Sci..

[51]  Michael Domaratzki,et al.  State Complexity of Proportional Removals , 2002, J. Autom. Lang. Comb..

[52]  Sheng Yu,et al.  Tight Lower Bound for the State Complexity of Shuffle of Regular Languages , 2002, J. Autom. Lang. Comb..

[53]  Martin Kutrib,et al.  Unary Language Operations and Their Nondeterministic State Complexity , 2002, Developments in Language Theory.

[54]  Jeffrey Shallit,et al.  Regular Expressions: New Results and Open Problems , 2004, J. Autom. Lang. Comb..

[55]  Martin Kutrib,et al.  State complexity of basic operations on nondeterministic finite automata , 2002, CIAA'02.

[56]  Andreas Malcher,et al.  Descriptional Complexity of Machines with Limited Resources , 2002, J. Univers. Comput. Sci..

[57]  Michael Domaratzki,et al.  State Complexity of Shuffle on Trajectories , 2002, DCFS.

[58]  Juraj Hromkovic,et al.  Descriptional Complexity of Finite Automata: Concepts and Open Problems , 2002, J. Autom. Lang. Comb..

[59]  Sheng Yu,et al.  State Complexity of Finite and Infinite Regular Languages , 2002, Bull. EATCS.

[60]  Jeffrey Shallit,et al.  Unary Language Operations, State Complexity and Jacobsthal's Function , 2002, Int. J. Found. Comput. Sci..

[61]  Marek Chrobak,et al.  Errata to: "finite automata and unary languages" , 2003 .

[62]  Cezar Câmpeanu,et al.  The Maximum State Complexity for Finite Languages , 2004, J. Autom. Lang. Comb..

[63]  Jozef Jirásek,et al.  State Complexity of Concatenation and Complementation of Regular Languages , 2004, CIAA.

[64]  Derick Wood,et al.  On the state complexity of reversals of regular languages , 2004, Theor. Comput. Sci..

[65]  Narad Rampersad The state complexity of L^2 and L^k , 2004 .

[66]  Galina Jirásková,et al.  State complexity of some operations on binary regular languages , 2005, Theor. Comput. Sci..

[67]  Galina Jirásková,et al.  Union and Intersection of Regular Languages and Descriptional Complexity , 2005, DCFS.

[68]  Sheng Yu State Complexity: Recent Results and Open Problems , 2005, Fundam. Informaticae.

[69]  Viliam Geffert (Non)determinism and the Size of One-Way Finite Automata , 2005, DCFS.

[70]  Giovanni Pighizzini,et al.  Complementing unary nondeterministic automata , 2005, Theor. Comput. Sci..

[71]  Viliam Geffert Magic Numbers in the State Hierarchy of Finite Automata , 2006, MFCS.

[72]  Narad Rampersad The state complexity of L2 and Lk , 2006, Inf. Process. Lett..

[73]  Markus Holzer,et al.  Finding Lower Bounds for Nondeterministic State Complexity Is Hard , 2006, Developments in Language Theory.

[74]  Martin Kutrib,et al.  The size of Higman-Haines sets , 2007, Theor. Comput. Sci..

[75]  Sheng Yu,et al.  On the State Complexity of Combined Operations , 2006, CIAA.

[76]  Arto Salomaa,et al.  State complexity of combined operations , 2007, Theor. Comput. Sci..

[77]  Viliam Geffert State Hierarchy for One-Way Finite Automata , 2007, J. Autom. Lang. Comb..

[78]  Markus Holzer,et al.  On the average state and transition complexity of finite languages , 2007, Theor. Comput. Sci..

[79]  Martin Kutrib,et al.  More on the Size of Higman-Haines Sets: Effective Constructions , 2007, MCU.

[80]  Kai Salomaa,et al.  Descriptional Complexity of Nondeterministic Finite Automata , 2007, Developments in Language Theory.

[81]  Kai Salomaa,et al.  On the State Complexity of Combined Operations and their Estimation , 2007, Int. J. Found. Comput. Sci..

[82]  Yo-Sub Han,et al.  State Complexity of Union and Intersection of Finite Languages , 2007, Developments in Language Theory.

[83]  Galina Jirásková,et al.  On the State Complexity of Complements, Stars, and Reversals of Regular Languages , 2008, Developments in Language Theory.

[84]  Z. Ésik,et al.  State complexity of multiple Boolean and catenation operations April 2008 1 , 2008 .

[85]  Stavros Konstantinidis,et al.  State Complexity of the Subword Closure Operation with Applications to DNA Coding , 2008, Int. J. Found. Comput. Sci..

[86]  Yuan Gao,et al.  The State Complexity of Two Combined Operations: Star of Catenation and Star of Reversal , 2008, Fundam. Informaticae.

[87]  Michael Domaratzki,et al.  State Complexity of Orthogonal Catenation , 2008, DCFS.

[88]  Jozef Jirásek,et al.  Deterministic Blow-Ups of Minimal Nondeterministic Finite Automata over a Fixed Alphabet , 2008, Int. J. Found. Comput. Sci..

[89]  Alexander Okhotin,et al.  State complexity of cyclic shift , 2008, RAIRO Theor. Informatics Appl..

[90]  Stavros Konstantinidis,et al.  State-Complexity Hierarchies of Uniform Languages of Alphabet-Size Length , 2009, DCFS.

[91]  Jeffrey Shallit,et al.  Closures in Formal Languages: Concatenation, Separation, and Algorithms , 2009, ArXiv.

[92]  Galina Jirásková,et al.  State Complexity of Intersection and Union of Suffix-Free Languages and Descriptional Complexity , 2009, NCMA.

[93]  Janusz A. Brzozowski,et al.  Languages Convex with Respect to Binary Relations, and Their Closure Properties , 2009, Acta Cybern..

[94]  Martin Kutrib,et al.  More on the Size of Higman-Haines Sets: Effective Constructions , 2007, Fundam. Informaticae.

[95]  Galina Jirásková Concatenation of Regular Languages and Descriptional Complexity , 2009, CSR.

[96]  Jeffrey Shallit,et al.  Decimations of languages and state complexity , 2009, Theor. Comput. Sci..

[97]  Yuan Gao,et al.  Estimation of state complexity of combined operations , 2009, Theor. Comput. Sci..

[98]  Narad Rampersad,et al.  On NFAs where all states are final, initial, or both , 2008, Theor. Comput. Sci..

[99]  Martin Kutrib,et al.  Descriptional and Computational Complexity of Finite Automata , 2009, LATA.

[100]  Jeffrey Shallit,et al.  State complexity of unique rational operations , 2009, Theor. Comput. Sci..

[101]  Martin Kutrib,et al.  NONDETERMINISTIC FINITE AUTOMATA — RECENT RESULTS ON THE DESCRIPTIONAL AND COMPUTATIONAL COMPLEXITY , 2009 .

[102]  Jeffrey Shallit,et al.  Closures in Formal Languages and Kuratowski's Theorem , 2009, Developments in Language Theory.

[103]  Derick Wood,et al.  Nondeterministic State Complexity of Basic Operations for Prefix-Free Regular Languages , 2009, Fundam. Informaticae.

[104]  Alexander Okhotin,et al.  Nondeterministic State Complexity of Positional Addition , 2009, DCFS.

[105]  Dominique Perrin,et al.  Codes and Automata (Encyclopedia of Mathematics and its Applications) , 2009 .

[106]  Martin Kutrib,et al.  Determination of finite automata accepting subregular languages , 2009, Theor. Comput. Sci..

[107]  Galina Jirásková Magic Numbers and Ternary Alphabet , 2009, Developments in Language Theory.

[108]  Juraj Hromkovic,et al.  Lower Bounds on the Size of Sweeping Automata , 2009, J. Autom. Lang. Comb..

[109]  Michael Domaratzki,et al.  State complexity of power , 2009, Theor. Comput. Sci..

[110]  Yo-Sub Han,et al.  State complexity of basic operations on suffix-free regular languages , 2009, Theor. Comput. Sci..

[111]  Laura Giambruno,et al.  The Average State Complexity of Rational Operations on Finite Languages , 2010, Int. J. Found. Comput. Sci..

[112]  Galina Jirásková,et al.  Complexity in Prefix-Free Regular Languages , 2010, DCFS.

[113]  Juraj Sebej Reversal of regular languages and state complexity , 2010, ITAT.

[114]  Alexander Okhotin,et al.  On the State Complexity of Scattered Substrings and Superstrings , 2010, Fundam. Informaticae.

[115]  Janusz A. Brzozowski Quotient Complexity of Regular Languages , 2010, J. Autom. Lang. Comb..

[116]  Quotient Complexity of Closed Languages , 2009, CSR.

[117]  Janusz A. Brzozowski,et al.  Complexity in Convex Languages , 2010, LATA.

[118]  Yuan Gao,et al.  State Complexity of Catenation Combined with Star and Reversal , 2010, DCFS.

[119]  Laura Giambruno,et al.  Complexity of Operations on Cofinite Languages , 2010, LATIN.

[120]  Tomás Masopust,et al.  Complexity in Union-Free Regular Languages , 2010, Int. J. Found. Comput. Sci..

[121]  Yuan Gao,et al.  Transition Complexity of Incomplete DFAs , 2010, Fundam. Informaticae.

[122]  Yuan Gao,et al.  State Complexity of Two Combined Operations: Reversal-Catenation and Star-Catenation , 2010, ArXiv.

[123]  Yuan Gao,et al.  State complexity of union and intersection combined with star and reversal , 2010, ArXiv.

[124]  Emanuele Rodaro,et al.  State Complexity of Prefix, Suffix, Bifix and Infix Operators on Regular Languages , 2010, Developments in Language Theory.

[125]  Janusz A. Brzozowski,et al.  Quotient Complexity of Bifix-, Factor-, and Subword-Free Languages , 2010, ArXiv.

[126]  Michael Domaratzki,et al.  Orthogonal Concatenation: Language Equations and State Complexity , 2010, J. Univers. Comput. Sci..

[127]  Yo-Sub Han,et al.  Nondeterministic State Complexity for Suffix-Free Regular Languages , 2010, DCFS.

[128]  Juraj Sebej,et al.  Note on Reversal of Binary Regular Languages , 2011, DCFS.

[129]  Zhi Xu,et al.  Decision problems for convex languages , 2008, Inf. Comput..

[130]  Shou-Feng Wang,et al.  𝒫𝒮-regular languages , 2011, Int. J. Comput. Math..

[131]  Martin Kutrib,et al.  The Magic Number Problem for Subregular Language Families , 2012, Int. J. Found. Comput. Sci..

[132]  Bo Liu,et al.  Quotient Complexity of Star-Free Languages , 2010, Int. J. Found. Comput. Sci..

[133]  Janusz A. Brzozowski,et al.  Quotient complexity of ideal languages , 2013, Theor. Comput. Sci..