BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS

A Balancing Domain Decomposition by Constraints (BDDC) preconditioner for Isogeometric Analysis of scalar elliptic problems is constructed and analyzed by introducing appropriate discrete norms. A main result of this work is the proof that the proposed isogeometric BDDC preconditioner is scalable in the number of subdomains and quasi-optimal in the ratio of subdomain and element sizes. Another main result is the numerical validation of the theoretical convergence rate estimates by carrying out several two- and three-dimensional tests on serial and parallel computers. These numerical experiments also illustrate the preconditioner performance with respect to the polynomial degree and the regularity of the NURBS basis functions, as well as its robustness with respect to discontinuities of the coefficient of the elliptic problem across subdomain boundaries.

[1]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[2]  Susanne C. Brenner,et al.  BDDC and FETI-DP without matrices or vectors , 2007 .

[3]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[4]  Luca F. Pavarino,et al.  Overlapping Schwarz Methods for Isogeometric Analysis , 2012, SIAM J. Numer. Anal..

[5]  Luca F. Pavarino,et al.  Robust BDDC Preconditioners for Reissner-Mindlin Plate Bending Problems and MITC Elements , 2010, SIAM J. Numer. Anal..

[6]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[7]  G. Sangalli,et al.  IsoGeometric analysis using T-splines on two-patch geometries , 2011 .

[8]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[9]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[10]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[11]  Olof B. Widlund,et al.  BDDC Preconditioners for Spectral Element Discretizations of Almost Incompressible Elasticity in Three Dimensions , 2010, SIAM J. Sci. Comput..

[12]  Olof B. Widlund,et al.  An Analysis of a FETI-DP Algorithm on Irregular Subdomains in the Plane , 2008, SIAM J. Numer. Anal..

[13]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[14]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[15]  F. Auricchio,et al.  The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .

[16]  Luca F. Pavarino,et al.  BDDC and FETI-DP preconditioners for spectral element discretizations , 2007 .

[17]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..

[18]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[19]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[20]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[21]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[22]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[23]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[24]  Olof B. Widlund,et al.  FETI‐DP, BDDC, and block Cholesky methods , 2006 .

[25]  Olof B. Widlund,et al.  BDDC Algorithms for Incompressible Stokes Equations , 2006, SIAM J. Numer. Anal..

[26]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[27]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[28]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[29]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[30]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[31]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[32]  J. Mandel,et al.  An algebraic theory for primal and dual substructuring methods by constraints , 2005 .

[33]  Olof B. Widlund,et al.  Dual‐primal FETI methods for linear elasticity , 2006 .

[34]  Jesús Ildefonso Díaz Díaz,et al.  ON THE COMPLEX GINZBURG–LANDAU EQUATION WITH A DELAYED FEEDBACK , 2006 .