The low synaptic release probability in vivo

[1]  M. Kuno Mechanism of facilitation and depression of the excitatory synaptic potential in spinal motoneurones , 1964, The Journal of physiology.

[2]  A. Hansen,et al.  Effect of anoxia on ion distribution in the brain. , 1985, Physiological reviews.

[3]  S. Sherman,et al.  Synaptic circuits involving an individual retinogeniculate axon in the cat , 1987, The Journal of comparative neurology.

[4]  R. Keep,et al.  Brain fluid calcium concentration and response to acute hypercalcaemia during development in the rat. , 1988, The Journal of physiology.

[5]  Y. Kang,et al.  Differential connections by intracortical axon collaterals among pyramidal tract cells in the cat motor cortex. , 1991, The Journal of physiology.

[6]  M. Liberman Central projections of auditory‐nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus , 1991, The Journal of comparative neurology.

[7]  H. Olpe,et al.  Increased acetylcholine and quisqualate responsiveness after blockade of GABAB receptors. , 1992, European journal of pharmacology.

[8]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[9]  I. Forsythe,et al.  Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. , 1994, The Journal of physiology.

[10]  B. Sakmann,et al.  Pre‐ and postsynaptic whole‐cell recordings in the medial nucleus of the trapezoid body of the rat. , 1995, The Journal of physiology.

[11]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[12]  Erik Stålberg,et al.  The study of normal and abnormal neuromuscular transmission with single fibre electromyography , 1997, Journal of Neuroscience Methods.

[13]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  T. Salt,et al.  Characterization of sensory and corticothalamic excitatory inputs to rat thalamocortical neurones in vitro , 1998, The Journal of physiology.

[15]  B. Sakmann,et al.  Depletion of calcium in the synaptic cleft of a calyx‐type synapse in the rat brainstem , 1999, The Journal of physiology.

[16]  K. J. Canning,et al.  Excitability of rat dentate gyrus granule cells in vivo is controlled by tonic and evoked GABAB receptor-mediated inhibition , 2000, Brain Research.

[17]  H. von Gersdorff,et al.  Fine-Tuning an Auditory Synapse for Speed and Fidelity: Developmental Changes in Presynaptic Waveform, EPSC Kinetics, and Synaptic Plasticity , 2000, The Journal of Neuroscience.

[18]  B. Walmsley,et al.  Release probability modulates short‐term plasticity at a rat giant terminal , 2000, The Journal of physiology.

[19]  W. Regehr,et al.  Developmental Remodeling of the Retinogeniculate Synapse , 2000, Neuron.

[20]  S. Iwasaki,et al.  Developmental regulation of transmitter release at the calyx of Held in rat auditory brainstem , 2001, The Journal of physiology.

[21]  Nicholas J. Priebe,et al.  Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning. , 2001, Journal of neurophysiology.

[22]  A. C. Meyer,et al.  Estimation of Quantal Size and Number of Functional Active Zones at the Calyx of Held Synapse by Nonstationary EPSC Variance Analysis , 2001, The Journal of Neuroscience.

[23]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[24]  B. Sakmann,et al.  In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain , 2002, Pflügers Archiv.

[25]  Bert Sakmann,et al.  Three-Dimensional Reconstruction of a Calyx of Held and Its Postsynaptic Principal Neuron in the Medial Nucleus of the Trapezoid Body , 2002, The Journal of Neuroscience.

[26]  Cornelia Kopp-Scheinpflug,et al.  Interaction of Excitation and Inhibition in Anteroventral Cochlear Nucleus Neurons That Receive Large Endbulb Synaptic Endings , 2002, The Journal of Neuroscience.

[27]  J. Borst,et al.  Short-term plasticity at the calyx of held , 2002, Nature Reviews Neuroscience.

[28]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[29]  B. Walmsley,et al.  Ultrastructural basis of synaptic transmission between endbulbs of Held and bushy cells in the rat cochlear nucleus , 2002, The Journal of physiology.

[30]  G. Spirou,et al.  Optimizing Synaptic Architecture and Efficiency for High-Frequency Transmission , 2002, Neuron.

[31]  J. C. Nelson,et al.  Excitatory inputs to spiny cells in layers 4 and 6 of cat striate cortex. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[32]  Matthew A Xu-Friedman,et al.  Ultrastructural Contributions to Desensitization at Cerebellar Mossy Fiber to Granule Cell Synapses , 2003, The Journal of Neuroscience.

[33]  U. Eysel,et al.  Quantitative studies of intracellular postsynaptic potentials in the lateral geniculate nucleus of the cat with respect to optic tract stimulus response latencies , 1976, Experimental Brain Research.

[34]  Katsumi Aoki,et al.  Recent development of flow visualization , 2004, J. Vis..

[35]  Ling-gang Wu,et al.  Isoflurane Inhibits Transmitter Release and the Presynaptic Action Potential , 2004, Anesthesiology.

[36]  A. Zador,et al.  Synaptic Mechanisms of Forward Suppression in Rat Auditory Cortex , 2005, Neuron.

[37]  W. Betz,et al.  Synaptic vesicle pools , 2005, Nature Reviews Neuroscience.

[38]  M. Wall Short‐term synaptic plasticity during development of rat mossy fibre to granule cell synapses , 2005, The European journal of neuroscience.

[39]  Nicholas J. Priebe,et al.  Short-Term Depression in Thalamocortical Synapses of Cat Primary Visual Cortex , 2005, The Journal of Neuroscience.

[40]  Thomas A. Nielsen,et al.  Rapid Vesicular Release, Quantal Variability, and Spillover Contribute to the Precision and Reliability of Transmission at a Glomerular Synapse , 2005, The Journal of Neuroscience.

[41]  Henrik Jörntell,et al.  Properties of Somatosensory Synaptic Integration in Cerebellar Granule Cells In Vivo , 2006, The Journal of Neuroscience.

[42]  Maria V. Sanchez-Vives,et al.  Impact of cortical network activity on short-term synaptic depression. , 2006, Cerebral cortex.

[43]  R. Silver,et al.  Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse , 2006, Nature.

[44]  T. Weyand,et al.  Retinogeniculate transmission in wakefulness. , 2007, Journal of neurophysiology.

[45]  John E. Lisman,et al.  The sequence of events that underlie quantal transmission at central glutamatergic synapses , 2007, Nature Reviews Neuroscience.

[46]  P. Detwiler,et al.  Different Mechanisms Generate Maintained Activity in ON and OFF Retinal Ganglion Cells , 2007, The Journal of Neuroscience.

[47]  D. Ulrich,et al.  GABAB receptors: synaptic functions and mechanisms of diversity , 2007, Current Opinion in Neurobiology.

[48]  Matteo Carandini,et al.  Thalamic filtering of retinal spike trains by postsynaptic summation. , 2007, Journal of vision.

[49]  Guangying K. Wu,et al.  Defining cortical frequency tuning with recurrent excitatory circuitry , 2007, Nature Neuroscience.

[50]  Youping Xiao,et al.  A simple model of retina-LGN transmission , 2008, Journal of Computational Neuroscience.

[51]  Lawrence C. Sincich,et al.  Transmission of Spike Trains at the Retinogeniculate Synapse , 2007, The Journal of Neuroscience.

[52]  M. Häusser,et al.  High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons , 2007, Nature.

[53]  I. Módy,et al.  Activation of GABAA Receptors: Views from Outside the Synaptic Cleft , 2007, Neuron.

[54]  B. Grothe,et al.  Synaptic transmission at the calyx of Held under in vivo like activity levels. , 2007, Journal of neurophysiology.

[55]  D. Featherstone,et al.  Regulation of Synaptic Transmission by Ambient Extracellular Glutamate , 2008, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[56]  P. X. Joris,et al.  The volley theory and the spherical cell puzzle , 2008, Neuroscience.

[57]  Bert Sakmann,et al.  Driver or Coincidence Detector: Modal Switch of a Corticothalamic Giant Synapse Controlled by Spontaneous Activity and Short-Term Depression , 2008, The Journal of Neuroscience.

[58]  G. Buzsáki,et al.  Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex , 2008, Nature Neuroscience.

[59]  M. Malmierca,et al.  The medial nucleus of the trapezoid body: Comparative physiology , 2008, Neuroscience.

[60]  M. B. Sachs,et al.  Auditory nerve inputs to cochlear nucleus neurons studied with cross-correlation , 2008, Neuroscience.

[61]  P. Manis,et al.  Short-term synaptic depression and recovery at the mature mammalian endbulb of Held synapse in mice. , 2008, Journal of neurophysiology.

[62]  Norman R. Saunders,et al.  Barriers in the brain: a renaissance? , 2008, Trends in Neurosciences.

[63]  Nicholas J. Priebe,et al.  Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex , 2008, Neuron.

[64]  Harvey A Swadlow,et al.  The Impact of an LGNd Impulse on the Awake Visual Cortex: Synaptic Dynamics and the Sustained/Transient Distinction , 2008, The Journal of Neuroscience.

[65]  R Angus Silver,et al.  The Contribution of Single Synapses to Sensory Representation in Vivo , 2008, Science.

[66]  S. D. Lac,et al.  Frequency-Independent Synaptic Transmission Supports a Linear Vestibular Behavior , 2008, Neuron.

[67]  Takeshi Sakaba,et al.  Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release , 2008, Neuron.

[68]  Dirk Feldmeyer,et al.  Developmental alterations in the functional properties of excitatory neocortical synapses , 2009, The Journal of physiology.

[69]  J. Dittman,et al.  Molecular circuitry of endocytosis at nerve terminals. , 2009, Annual review of cell and developmental biology.

[70]  Nathalie L Rochefort,et al.  Sparsification of neuronal activity in the visual cortex at eye-opening , 2009, Proceedings of the National Academy of Sciences.

[71]  J. Rothman,et al.  Synaptic depression enables neuronal gain control , 2009, Nature.

[72]  Norbert Hájos,et al.  Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content , 2009, Journal of Neuroscience Methods.

[73]  Jeannette A. M. Lorteije,et al.  Reliability and Precision of the Mouse Calyx of Held Synapse , 2009, The Journal of Neuroscience.

[74]  J. Tiago Gonçalves,et al.  Internally Mediated Developmental Desynchronization of Neocortical Network Activity , 2009, The Journal of Neuroscience.

[75]  J. Marks,et al.  Isoflurane inhibits the neurotransmitter release machinery. , 2009, Journal of neurophysiology.

[76]  Csaba Varga,et al.  Regulation of cortical microcircuits by unitary GABAergic volume transmission , 2009, Nature.

[77]  Thierry Nieus,et al.  Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. , 2009, Journal of neurophysiology.

[78]  T. Branco,et al.  The probability of neurotransmitter release: variability and feedback control at single synapses , 2009, Nature Reviews Neuroscience.

[79]  W. Maass,et al.  State-dependent computations: spatiotemporal processing in cortical networks , 2009, Nature Reviews Neuroscience.

[80]  A. Magnusson,et al.  Unconventional GABA release: mechanisms and function , 2009, Current Opinion in Neurobiology.