General Classes of Performance Lower Bounds for Parameter Estimation—Part II: Bayesian Bounds

In this paper, a new class of Bayesian lower bounds is proposed. Derivation of the proposed class is performed via projection of each entry of the vector-function to be estimated on a Hilbert subspace of L2. This Hilbert subspace contains linear transformations of elements in the domain of an integral transform, applied on functions used for computation of bounds in the Weiss-Weinstein class. The integral transform generalizes the traditional derivative and sampling operators, used for computation of existing performance lower bounds, such as the Bayesian Cramér-Rao, Bayesian Bhattacharyya, and Weiss-Weinstein bounds. It is shown that some well-known Bayesian lower bounds can be derived from the proposed class by specific choice of the integral transform kernel. A new lower bound is derived from the proposed class using the Fourier transform kernel. The proposed bound is compared with other existing bounds in terms of signal-to-noise ratio (SNR) threshold region prediction in the problem of frequency estimation. The bound is shown to be computationally manageable and provides better prediction of the SNR threshold region, exhibited by the maximum a posteriori probability (MAP) and minimum-mean-square-error (MMSE) estimators.

[1]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[2]  Philippe Forster,et al.  A Fresh Look at the Bayesian Bounds of the Weiss-Weinstein Family , 2008, IEEE Transactions on Signal Processing.

[3]  Wen Xu,et al.  Performance Bounds on Matched-Field Methods for Source Localization and Estimation of Ocean Environmental Parameters , 2001 .

[4]  Joseph Tabrikian,et al.  A new Bayesian lower bound on the mean square error of estimators , 2008, 2008 16th European Signal Processing Conference.

[5]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[6]  Ben-Zion Bobrovsky,et al.  A lower bound on the estimation error for certain diffusion processes , 1976, IEEE Trans. Inf. Theory.

[7]  A. Weiss,et al.  Fundamental limitations in passive time delay estimation--Part I: Narrow-band systems , 1983 .

[8]  E. Parzen Time Series Analysis Papers , 1967 .

[9]  Yossef Steinberg,et al.  Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.

[10]  Ehud Weinstein Relations between Belini-Tartara, Chazan-Zakai-Ziv, and Wax-Ziv lower bounds , 1988, IEEE Trans. Inf. Theory.

[11]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[12]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators , 2010, IEEE Transactions on Information Theory.

[13]  Philippe Forster,et al.  The Bayesian ABEL Bound on the Mean Square Error , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[14]  Wen Xu,et al.  A bound on mean-square estimation error with background parameter mismatch , 2004, IEEE Transactions on Information Theory.

[15]  H.L. Van Trees,et al.  Combined Cramer-Rao/Weiss-Weinstein Bound for Tracking Target Bearing , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[16]  Kellen Petersen August Real Analysis , 2009 .

[17]  Ehud Weinstein,et al.  A general class of lower bounds in parameter estimation , 1988, IEEE Trans. Inf. Theory.

[18]  Hagit Messer,et al.  A Barankin-type lower bound on the estimation error of a hybrid parameter vector , 1997, IEEE Trans. Inf. Theory.

[19]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[20]  Ehud Weinstein,et al.  A lower bound on the mean-square error in random parameter estimation , 1985, IEEE Trans. Inf. Theory.

[21]  H. V. Trees,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .

[22]  Alexandre Renaux Weiss–Weinstein Bound for Data-Aided Carrier Estimation , 2007, IEEE Signal Processing Letters.

[23]  Sandro Bellini,et al.  Bounds on Error in Signal Parameter Estimation , 1974, IEEE Trans. Commun..

[24]  Joseph Tabrikian,et al.  On order relations between lower bounds on the MSE of unbiased estimators , 2010, 2010 IEEE International Symposium on Information Theory.

[25]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[26]  Wen Xu,et al.  Bayesian bounds for matched-field parameter estimation , 2004, IEEE Transactions on Signal Processing.

[27]  P. Ciblat,et al.  ZIV-ZAKAI bound for harmonic retrieval in multiplicative and additive gaussian noise , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[28]  Jacob Ziv,et al.  Improved Lower Bounds on Signal Parameter Estimation , 1975, IEEE Trans. Inf. Theory.

[29]  Jacob Ziv,et al.  Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.

[30]  Kristine L. Bell,et al.  Ziv-Zakai lower bounds in bearing estimation , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[31]  Kristine L. Bell,et al.  Explicit Ziv-Zakai lower bound for bearing estimation , 1996, IEEE Trans. Signal Process..