Information-theoretic capacity of clustered random networks

We analyze the capacity scaling laws of clustered ad hoc networks in which nodes are distributed according to a doubly stochastic shot-noise Cox process. We identify five different operational regimes, and for each regime we devise a communication strategy that allows to achieve a throughput featuring the same scaling exponent as the maximum theoretical capacity.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Michele Garetto,et al.  Information-Theoretic Capacity of Clustered Random Networks , 2011, IEEE Trans. Inf. Theory.

[3]  Massimo Franceschetti,et al.  Closing the gap in the capacity of random wireless networks , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[4]  Ayfer Özgür,et al.  Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks , 2006, IEEE Transactions on Information Theory.

[5]  Urs Niesen,et al.  On Capacity Scaling in Arbitrary Wireless Networks , 2007, IEEE Transactions on Information Theory.

[6]  Massimo Franceschetti,et al.  The Degrees of Freedom of Wireless NetworksVia Cut-Set Integrals , 2011, IEEE Transactions on Information Theory.

[7]  Urs Niesen,et al.  On the optimality of multi-hop communication in large wireless networks , 2010, 2010 IEEE International Symposium on Information Theory.

[8]  E. N. Gilbert,et al.  Random Plane Networks , 1961 .

[9]  J. Quintanilla,et al.  Efficient measurement of the percolation threshold for fully penetrable discs , 2000 .

[10]  Bruce Hajek,et al.  Scheduling nonuniform traffic in a packet-switching system with small propagation delay , 1997, TNET.

[11]  Massimo Franceschetti,et al.  The Capacity of Wireless Networks: Information-Theoretic and Physical Limits , 2009, IEEE Transactions on Information Theory.

[12]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[13]  Michele Garetto,et al.  Capacity scaling of wireless networks with inhomogeneous node density: upper bounds , 2009, IEEE Journal on Selected Areas in Communications.

[14]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[15]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[16]  Ayfer Özgür,et al.  Linear capacity scaling in wireless networks: Beyond physical limits? , 2010, 2010 Information Theory and Applications Workshop (ITA).

[17]  Isaac Balberg Continuum Percolation , 2009, Encyclopedia of Complexity and Systems Science.

[18]  J. Møller,et al.  Shot noise Cox processes , 2003, Advances in Applied Probability.

[19]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.

[20]  Michele Garetto,et al.  Capacity Scaling of Wireless Networks with Inhomogeneous Node Density: Lower Bounds , 2009, IEEE INFOCOM 2009.

[21]  Massimo Franceschetti,et al.  Closing the Gap in the Capacity of Wireless Networks Via Percolation Theory , 2007, IEEE Transactions on Information Theory.