Formation control of nonholonomic wheeled robots in the presence of matched input disturbances

Abstract This paper presents a new approach for formation keeping control of a network of nonholonomic wheeled robots within the port-Hamiltonian framework in the presence of matched input disturbances. The formation keeping controller drives the network towards a desired formation by assigning virtual couplings between the robots, while an internal-modelbased controller is designed to locally compensate the disturbance for each of the robots.

[1]  Francesco Mondada,et al.  The e-puck, a Robot Designed for Education in Engineering , 2009 .

[2]  Claudio De Persis,et al.  Disturbance rejection in formation keeping control of nonholonomic wheeled robots , 2016 .

[3]  Arjan van der Schaft,et al.  Regulation and input disturbance suppression for port-controlled Hamiltonian systems , 2003 .

[4]  Alessandro Astolfi,et al.  Exponential Stabilization of a Wheeled Mobile Robot Via Discontinuous Control , 1999 .

[5]  Claude Samson,et al.  Time-varying Feedback Stabilization of Car-like Wheeled Mobile Robots , 1993, Int. J. Robotics Res..

[6]  Murat Arcak,et al.  Passivity as a Design Tool for Group Coordination , 2007, IEEE Transactions on Automatic Control.

[7]  Claudio De Persis,et al.  Formation control using binary information , 2015, Autom..

[8]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems Theory: An Introductory Overview , 2014, Found. Trends Syst. Control..

[9]  K. D. Do,et al.  Nonlinear formation control of unicycle-type mobile robots , 2007, Robotics Auton. Syst..

[10]  Alberto Isidori,et al.  Robust Autonomous Guidance: An Internal Model Approach , 2003 .

[11]  Jacquelien M.A. Scherpen,et al.  Port-Hamiltonian approach to deployment , 2012 .

[12]  Claudio De Persis,et al.  On the Internal Model Principle in the Coordination of Nonlinear Systems , 2014, IEEE Transactions on Control of Network Systems.

[13]  Claudio Bonivento,et al.  Input Disturbance Suppression for Port-Hamiltonian Systems: An Internal Model Approach , 2007 .

[14]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[15]  Nathan van de Wouw,et al.  Distributed formation control of unicycle robots , 2012, 2012 IEEE International Conference on Robotics and Automation.

[16]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems on Graphs , 2011, SIAM J. Control. Optim..

[17]  Randal W. Beard,et al.  Distributed Consensus in Multi-vehicle Cooperative Control - Theory and Applications , 2007, Communications and Control Engineering.

[18]  Arjan van der Schaft,et al.  Formation Control of Wheeled Robots in the Port-Hamiltonian Framework , 2014 .

[19]  Claudio De Persis,et al.  Dynamic coupling design for nonlinear output agreement and time-varying flow control , 2013, Autom..

[20]  Romeo Ortega,et al.  Putting energy back in control , 2001 .