Analysis of Time Series with Artificial Neural Networks
暂无分享,去创建一个
[1] Salvador Torra Porras. Siniestralidad en seguros de consumo anual de las entidades de previsión social, La. Perspectiva probabilística y econométrica. Propuesta de un modelo econométrico neuronal para Cataluña. , 2004 .
[2] J. Carlos,et al. Estimating time delays between irregularly sampled time series , 2007 .
[3] Lakhmi C. Jain,et al. Radial Basis Function Networks 2: New Advances in Design , 2001 .
[4] Bernard F. Burke,et al. The radio time delay in the double quasar 0957 + 561 , 1992 .
[5] Peter Tiño,et al. A Kernel-Based Approach to Estimating Phase Shifts Between Irregularly Sampled Time Series: An Application to Gravitational Lenses , 2006, ECML.
[6] Markus Harva,et al. Bayesian Estimation of Time Delays Between Unevenly Sampled Signals , 2008, 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing.
[7] William H. Press,et al. The Time Delay of Gravitational Lens 0957+561. I. Methodology and Analysis of Optical Photometric Data , 1992 .
[8] Simon Haykin,et al. Neural Networks: A Comprehensive Foundation , 1998 .
[9] Y. Mellier,et al. Gravitational Lensing , 1990 .
[10] J. Hjorth,et al. ESTIMATION OF MULTIPLE TIME DELAYS IN COMPLEX GRAVITATIONAL LENS SYSTEMS , 1998 .
[11] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[12] Georg Dorffner,et al. Neural Networks for Time Series Processing , 1996 .
[13] O. Wucknitz. Gravitational Lensing , 2007, Large-Scale Peculiar Motions.
[14] Raymond J. Spiteri,et al. Inverting Gravitational Lenses , 2002, SIAM Rev..
[15] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[16] Douglas John Percival. Spectral representation of irregularly sampled radar image sequences , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.