Density, Viscosity, Vapor−Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]

Density and viscosity measurements in the T = (273.15 to 318.15) K range of pure chloroform and methyl tert-butyl ether (MTBE), as well as of the binary system [x1 chloroform + (1 − x1) MTBE] over the whole concentration range at T = 293.15 K, were made. The experimental results for the pure components were fitted to empirical equations, which permit the calculation of these properties in the studied temperature range. Calculated values are in agreement with the experimental ones. Data of the binary mixture were further used to calculate the excess molar volume and viscosity deviations. The excess molar enthalpy at T = (303 ± 1) K and vapor−liquid equilibrium measurements at T = (303.15 ± 0.05) K were also measured for the binary system. These last experimental results were used to calculate activity coefficients, the excess molar Gibbs energy, and excess molar entropy. This binary system shows strong negative deviations from ideality and exhibits a minimum pressure azeotrope, whose coordinates are: P = (...