Combined topology and fiber path design of composite layers using cellular automata

The popular Solid Isotropic Material Penalization (SIMP) technique of topology design is extended to simultaneous fiber-angle and topology design of composite laminae in a cellular automata (CA) framework. CA is a novel methodology to simulate a physical phenomenon based on iterative local updates of both field and design variables. Displacements are updated satisfying local equilibrium of CA cells. Fiber angles and density measures are updated based on the optimality criteria for the minimum compliance design. Numerical results for the design of 2D cantilever plates for single and multiple load cases are used to demonstrate the robustness of the proposed algorithm.

[1]  M. Rovati,et al.  Optimal design for two-dimensional structures made of composite materials , 1991 .

[2]  P. Pedersen On optimal orientation of orthotropic materials , 1989 .

[3]  O. Querin,et al.  Extended optimality in topology design , 2002 .

[4]  W. Becker,et al.  Layerwise adaptive topology optimization of laminate structures , 1999 .

[5]  Zafer Gürdal,et al.  Structural Design Using Optimality Based Cellular Automata , 2002 .

[6]  Layne T. Watson,et al.  The Cellular Automata Paradigm for the Parallel Solution of Heat Transfer Problems , 1996, Parallel Algorithms Appl..

[7]  Michael Schreckenberg,et al.  A cellular automaton traffic flow model for online simulation of traffic , 2001, Parallel Comput..

[8]  M. W. Hyer,et al.  Use of curvilinear fiber format in composite structure design , 1991 .

[9]  M. Hyer,et al.  Innovative design of composite structures: The use of curvilinear fiber format in composite structure design , 1990 .

[10]  P. Pedersen Bounds on elastic energy in solids of orthotropic materials , 1990 .

[11]  Sunwook Kim Multigrid Accelerated Cellular Automata for Structural Optimization: A 1-D Implementation , 2004 .

[12]  Zafer Gürdal,et al.  Cellular Automata for design of truss structures with linear and nonlinear response , 2000 .

[13]  G. Steven,et al.  A performance-based optimization method for topology design of continuum structures with mean compliance constraints , 2002 .

[14]  A ROSENBLUETH,et al.  The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. , 1946, Archivos del Instituto de Cardiologia de Mexico.

[15]  J. Barlow,et al.  Optimal stress locations in finite element models , 1976 .

[16]  P. Pedersen Examples of density, orientation, and shape-optimal 2D-design for stiffness and/or strength with orthotropic materials , 2004 .

[17]  Zafer Gürdal,et al.  DESIGN OF COMPOSITE LAYERS WITH CURVILINEAR FIBER PATHS USING CELLULAR AUTOMATA , 2003 .

[18]  Suha Oral,et al.  Optimum design of composite structures with curved fiber courses , 2003 .

[19]  Zafer Gürdal,et al.  Structural design using Cellular Automata for eigenvalue problems , 2004 .

[20]  Pauli Pedersen,et al.  On thickness and orientational design with orthotropic materials , 1991 .

[21]  Zafer Gürdal,et al.  CELLULAR AUTOMATA FOR DESIGN OF TWO-DIMENSIONAL CONTINUUM STRUCTURES , 2000 .

[22]  Srinivas Kodiyalam,et al.  Optimization of tow fiber paths for composite design , 1995 .

[23]  Layne T. Watson,et al.  Convergence analysis for cellular automata applied to truss design , 2002 .

[24]  John E. Renaud,et al.  Hybrid Cellular Automata: a biologically-inspired structural optimization technique , 2004 .

[25]  Layne T. Watson,et al.  Pipeline implementation of cellular automata for structural design on message-passing multiprocessors , 2006, Math. Comput. Model..

[26]  G. Duvaut,et al.  Optimization of fiber reinforced composites , 2000 .

[27]  G. Rozvany Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics , 2001 .