Transcranial Direct Current Stimulation Accelerates Allocentric Target Detection

[1]  M. Bikson,et al.  Left lateralizing transcranial direct current stimulation improves reading efficiency , 2012, Brain Stimulation.

[2]  Julie M. Baker,et al.  Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient , 2011, Brain Stimulation.

[3]  M. Corbetta,et al.  Spatial neglect and attention networks. , 2011, Annual review of neuroscience.

[4]  Abhishek Datta,et al.  Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models. , 2011, The journal of pain : official journal of the American Pain Society.

[5]  Brenda Rapp,et al.  The Literate Brain: The Relationship between Spelling and Reading , 2011, Journal of Cognitive Neuroscience.

[6]  R. Baayen,et al.  Analyzing Reaction Times , 2010 .

[7]  M. Bikson,et al.  Electrode montages for tDCS and weak transcranial electrical stimulation: Role of “return” electrode’s position and size , 2010, Clinical Neurophysiology.

[8]  L. Parra,et al.  Low-Intensity Electrical Stimulation Affects Network Dynamics by Modulating Population Rate and Spike Timing , 2010, The Journal of Neuroscience.

[9]  Felipe Fregni,et al.  Visual memory improved by non-invasive brain stimulation , 2010, Brain Research.

[10]  M. Behrmann,et al.  Top-down and bottom-up attentional guidance: investigating the role of the dorsal and ventral parietal cortices , 2010, Experimental Brain Research.

[11]  Pia Rotshtein,et al.  Separating neural correlates of allocentric and egocentric neglect: Distinct cortical sites and common white matter disconnections , 2010, Cognitive neuropsychology.

[12]  N. Bolognini,et al.  Enhancing multisensory spatial orienting by brain polarization of the parietal cortex , 2010, The European journal of neuroscience.

[13]  K. Lovblad,et al.  Neuroanatomy of hemispatial neglect and its functional components: a study using voxel-based lesion-symptom mapping. , 2010, Brain : a journal of neurology.

[14]  Alain Berthoz,et al.  Multiple reference frames used by the human brain for spatial perception and memory , 2010, Experimental Brain Research.

[15]  H. Coslett,et al.  Increased effect of target eccentricity on covert shifts of visual attention in patients with neglect , 2010, Cortex.

[16]  D. Reato,et al.  Gyri – precise head model of transcranial DC stimulation : Improved spatial focality using a ring electrode versus conventional rectangular pad , 2010 .

[17]  G. Pellizzer,et al.  Asymmetric learning transfer between imagined viewer- and object-rotations: Evidence of a hierarchical organization of spatial reference frames , 2009, Brain and Cognition.

[18]  G. Fink,et al.  Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. , 2009, Brain : a journal of neurology.

[19]  M. Bikson,et al.  Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro , 2009, Brain Stimulation.

[20]  D. Reato,et al.  Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad , 2009, Brain Stimulation.

[21]  Vijay Kannan,et al.  Neural Substrates of Visuospatial Processing in Distinct Reference Frames: Evidence from Unilateral Spatial Neglect , 2009, Journal of Cognitive Neuroscience.

[22]  T. Schenk,et al.  Both egocentric and allocentric cues support spatial priming in visual search , 2009, Neuropsychologia.

[23]  M. Neppi-Modona,et al.  Object-centred pseudoneglect for non-verbal visual stimuli , 2009, Experimental Brain Research.

[24]  Manfred Fahle,et al.  Dissociation of egocentric and allocentric coding of space in visual search after right middle cerebral artery stroke , 2008, Neuropsychologia.

[25]  Myoung-Hwan Ko,et al.  Improvement of visual scanning after DC brain polarization of parietal cortex in stroke patients with spatial neglect , 2008, Neuroscience Letters.

[26]  R. Baayen,et al.  Mixed-effects modeling with crossed random effects for subjects and items , 2008 .

[27]  Gottfried Schlaug,et al.  Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation , 2008, BMC Neuroscience.

[28]  H. Karnath,et al.  Disturbed line bisection is associated with posterior brain lesions , 2006, Brain Research.

[29]  Peter B Barker,et al.  Anatomy of Spatial Attention: Insights from Perfusion Imaging and Hemispatial Neglect in Acute Stroke , 2005, The Journal of Neuroscience.

[30]  A. Berthoz,et al.  Reference Frames for Spatial Cognition: Different Brain Areas are Involved in Viewer-, Object-, and Landmark-Centered Judgments About Object Location , 2004, Journal of Cognitive Neuroscience.

[31]  Sadatoshi Tsuji,et al.  Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans , 2004, Clinical Neurophysiology.

[32]  A. Priori Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability , 2003, Clinical Neurophysiology.

[33]  M. Farah,et al.  Neural Specialization for Letter Recognition , 2002, Journal of Cognitive Neuroscience.

[34]  A. Yamadori,et al.  Dissociation of body-centered and stimulus-centered representations in unilateral neglect , 2001, Neurology.

[35]  M. Nitsche,et al.  External modulation of visual perception in humans , 2001, Neuroreport.

[36]  J. Baudewig,et al.  Preceeding transcranial direct current stimulation modulates BOLD MRI responses to sensorimotor activation in humans , 2001, NeuroImage.

[37]  W Paulus,et al.  Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation , 2001, Magnetic resonance in medicine.

[38]  M. Nitsche,et al.  Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation , 2000, The Journal of physiology.

[39]  A. Berthoz,et al.  The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study , 2000, Experimental Brain Research.

[40]  A. Caramazza,et al.  Stimulus-centered neglect in reading and object recognition , 2000 .

[41]  K. Heilman,et al.  Neglect and Related Disorders , 1984, Seminars in neurology.

[42]  Anjan Chatterjee,et al.  Quantitative Analysis of Cancellation Tasks in Neglect , 1999, Cortex.

[43]  C. Marzi,et al.  The spatial distribution of visual attention in hemineglect and extinction patients. , 1998, Brain : a journal of neurology.

[44]  Alfonso Caramazza,et al.  Dissociable Coordinate Frames of Unilateral Spatial Neglect: “Viewer-Centered” Neglect , 1998, Brain and Cognition.

[45]  C D Frith,et al.  Space-based and object-based visual attention: shared and specific neural domains. , 1997, Brain : a journal of neurology.

[46]  Andrew W. Ellis,et al.  "Neglect dyslexia" and the early visual processing of letters in words and nonwords , 1995 .

[47]  Alfonso Caramazza,et al.  A framework for interpreting distinct patterns of hemispatial neglect , 1995 .

[48]  R. Ratcliff Methods for dealing with reaction time outliers. , 1993, Psychological bulletin.

[49]  H. Karnath,et al.  Trunk orientation as the determining factor of the 'contralateral' deficit in the neglect syndrome and as the physical anchor of the internal representation of body orientation in space. , 1991, Brain : a journal of neurology.

[50]  R. Young,et al.  Brain stimulation. , 1990, Neurosurgery clinics of North America.

[51]  E. Làdavas,et al.  Is the hemispatial deficit produced by right parietal lobe damage associated with retinal or gravitational coordinates? , 1987, Brain : a journal of neurology.

[52]  M. Kinsbourne Mechanisms of Unilateral Neglect , 1987 .

[53]  M. Jeannerod Neurophysiological and neuropsychological aspects of spatial neglect. , 1987 .

[54]  Jenni A Ogden,et al.  Anterior-posterior interhemispheric differences in the loci of lesions producing visual hemineglect , 1985, Brain and Cognition.