Cell-seeding and in vitro biocompatibility evaluation of polymeric matrices of PEO/PBT copolymers and PLLA.

[1]  P. Anderson Dermatology in General Medicine , 1994 .

[2]  M L Cooper,et al.  Evaluation of a biodegradable matrix containing cultured human fibroblasts as a dermal replacement beneath meshed skin grafts on athymic mice. , 1992, Surgery.

[3]  C. Blitterswijk,et al.  27. Polymer Reactions Resulting in Bone Bonding: A Review of the Biocompatibility of Polyactive , 1991 .

[4]  S. Sakabu,et al.  Skin wound closure in athymic mice with cultured human cells, biopolymers, and growth factors. , 1991, Surgery.

[5]  J. J. Grote,et al.  New alloplastic tympanic membrane material. , 1991, The American journal of otology.

[6]  V. Shetty,et al.  Preparation and Evaluation of a Nonproprietary Bilayer Skin Substitute , 1991, Plastic and reconstructive surgery.

[7]  J. J. Grote,et al.  The behavior of alloplastic tympanic membranes in Staphylococcus aureus-induced middle ear infection. I. Quantitative biocompatibility evaluation. , 1990, Journal of biomedical materials research.

[8]  J. Dokter,et al.  The use of cultured autologous epidermis in the treatment of extensive burn wounds. , 1990, The Journal of trauma.

[9]  B. van der Lei,et al.  Sudan black B as a histological stain for polymeric biomaterials embedded in glycol methacrylate. , 1988, Biomaterials.

[10]  J. J. Grote,et al.  Biocompatibility of six elastomers in vitro. , 1988, Journal of biomedical materials research.

[11]  C. Compton,et al.  Permanent Coverage of Large Burn Wounds with Autologous Cultured Human Epithelium , 1984 .

[12]  A. M. Reed,et al.  Biodegradable polymers for use in surgery — poly(ethylene oxide)/poly(ethylene terephthalate) (PEO/PET) copolymers: 2. In vitro degradation , 1981 .

[13]  B. Hull,et al.  Development and Use of a Living Skin Equivalent , 1981, Plastic and reconstructive surgery.

[14]  J. Mulliken,et al.  GRAFTING OF BURNS WITH CULTURED EPITHELIUM PREPARED FROM AUTOLOGOUS EPIDERMAL CELLS , 1981, The Lancet.

[15]  A. M. Reed,et al.  Biodegradable polymers for use in surgery—poly(ethylene oxide) poly(ethylene terephthalate) (PEO/PET) copolymers: 1 , 1979 .

[16]  S. C. Liu,et al.  Isolation and growth of adult human epidermal keratinocytes in cell culture. , 1978, The Journal of investigative dermatology.

[17]  H. Green,et al.  Seria cultivation of strains of human epidemal keratinocytes: the formation keratinizin colonies from single cell is , 1975, Cell.

[18]  A. P. Anderson,et al.  Studies in burns. XII. Evaporative water loss is related to postburn hypermetabolism. , 1974, The Journal of surgical research.

[19]  C A Homsy,et al.  Bio-compatibility in selection of materials for implantation. , 1970, Journal of biomedical materials research.

[20]  A. Ylppo Children's Clinic, Helsinki. , 1948, Lancet.

[21]  C. V. van Blitterswijk,et al.  A new biodegradable matrix as part of a cell seeded skin substitute for the treatment of deep skin defects: a physico-chemical characterisation. , 1993, Clinical materials.

[22]  P. Dijkstra,et al.  Biocompatibility of poly (DL-lactic acid/glycine) copolymers. , 1991, Clinical materials.

[23]  Ioannis V. Yannas,et al.  Biologically Active Analogues of the Extracellular Matrix: Artificial Skin and Nerves† , 1990 .

[24]  A. M. Reed,et al.  BIODEGRADABLE ELASTOMERIC BIOMATERIALS — POLYETHYLENE OXIDE/POLYETHYLENE TEREPHTHALATE COPOLYMERS , 1977, Transactions - American Society for Artificial Internal Organs.