Cancer nanomedicines: so many papers and so few drugs!

[1]  L. Goodman,et al.  NITROGEN MUSTARD THERAPY: Use of Methyl-Bis(Beta-Chloroethyl)amine Hydrochloride and Tris(Beta-Chloroethyl)amine Hydrochloride for Hodgkin's Disease, Lymphosarcoma, Leukemia and Certain Allied and Miscellaneous Disorders , 1946 .

[2]  I. M. Klotz The effects of salts and proteins on the spectra of some dyes and indicators. , 1947, Chemical Reviews.

[3]  M. Wintrobe Nitrogen mustard therapy. , 1948, The American journal of medicine.

[4]  A. Bangham,et al.  NEGATIVE STAINING OF PHOSPHOLIPIDS AND THEIR STRUCTURAL MODIFICATION BY SURFACE-ACTIVE AGENTS AS OBSERVED IN THE ELECTRON MICROSCOPE. , 1964, Journal of molecular biology.

[5]  F. Arcamone,et al.  Daunomycin. I. The Structure of Daunomycinone , 1964 .

[6]  A. McPhail,et al.  Plant Antitumor Agents. I. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminata1,2 , 1966 .

[7]  R. Snyder,et al.  Short Asthmatic Children and Human Growth Hormone , 1968, Clinical pediatrics.

[8]  F. Arcamone,et al.  Adriamycin, 14‐hydroxydaimomycin, a new antitumor antibiotic from S. Peucetius var. caesius , 1969, Biotechnology and bioengineering.

[9]  R. Schindler,et al.  [Transport of cytostatic agents by the plasma proteins. 3. In vitro antitumor action of cytostatic-azoprotein conjugates]. , 1969, European journal of cancer.

[10]  [Transport of cytostatic agents by the plasma proteins. II. Intratumoral localization of fibrinogen]. , 1969, European journal of cancer.

[11]  G. Gregoriadis,et al.  Enzyme entrapment in liposomes , 1971, FEBS letters.

[12]  G Gregoriadis,et al.  The carrier potential of liposomes in biology and medicine (second of two parts). , 1976, The New England journal of medicine.

[13]  Z. Tökés,et al.  In vitro and in vivo studies with adriamycin liposomes. , 1979, Biochemical and biophysical research communications.

[14]  F. Szoka,et al.  Preparation of unilamellar liposomes of intermediate size (0.1-0.2 mumol) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes. , 1980, Biochimica et biophysica acta.

[15]  L. Nadler,et al.  Characterization of a human B lymphocyte-specific antigen. , 1980, Journal of immunology.

[16]  J. Ritz,et al.  A unique cell surface antigen identifying lymphoid malignancies of B cell origin. , 1981, The Journal of clinical investigation.

[17]  M. Masquelier,et al.  A covalent linkage between daunorubicin and proteins that is stable in serum and reversible by lysosomal hydrolases, as required for a lysosomotropic drug-carrier conjugate: in vitro and in vivo studies. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[18]  G. Boulianne,et al.  Production of functional chimaeric mouse/human antibody , 1984, Nature.

[19]  J. Griffin,et al.  A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells. , 1984, Leukemia research.

[20]  S L Morrison,et al.  Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[21]  H. Maeda,et al.  A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. , 1986, Cancer research.

[22]  D. Czerwinski,et al.  Shared idiotypes expressed by human B-cell lymphomas. , 1989, The New England journal of medicine.

[23]  D. Williams,et al.  Calicheamicins, a novel family of antitumor antibiotics. 3. Isolation, purification and characterization of calicheamicins beta 1Br, gamma 1Br, alpha 2I, alpha 3I, beta 1I, gamma 1I and delta 1I. , 1989, The Journal of antibiotics.

[24]  Y. Barenholz,et al.  Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. , 1993, Biochimica et biophysica acta.

[25]  R. Wallace,et al.  Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. , 1993, Cancer research.

[26]  P. Chinn,et al.  Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. , 1994, Blood.

[27]  F. Dosio,et al.  Preparation, characterization and properties in vitro and in vivo of a paclitaxel–albumin conjugate , 1997 .

[28]  S. Hirota,et al.  Effect of liposomalization on the antitumor activity, side-effects and tissue distribution of CPT-11. , 1998, Cancer letters.

[29]  C. Lee,et al.  Camptothecin-20-PEG ester transport forms: the effect of spacer groups on antitumor activity. , 1998, Bioorganic & medicinal chemistry.

[30]  Linear cyclodextrin copolymers , 1999 .

[31]  I. Bernstein,et al.  CLINICAL OBSERVATIONS, INTERVENTIONS, AND THERAPEUTIC TRIALS Selective Ablation of Acute Myeloid Leukemia Using Antibody-Targeted Chemotherapy: A Phase I Study of an Anti-CD33 Calicheamicin Immunoconjugate , 2017 .

[32]  Mark E. Davis,et al.  New class of polymers for the delivery of macromolecular therapeutics. , 1999 .

[33]  H. Brem,et al.  The development of new brain tumor therapy utilizing the local and sustained delivery of chemotherapeutic agents from biodegradable polymers , 1999, Cancer.

[34]  H. Maeda,et al.  SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. , 1991, Advanced drug delivery reviews.

[35]  M. Eisenhart The Paradox of Peer Review: Admitting too Much or Allowing too Little? , 2002 .

[36]  Patrick Soon-Shiong,et al.  Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[37]  Jianjun Cheng,et al.  Synthesis of linear, beta-cyclodextrin-based polymers and their camptothecin conjugates. , 2003, Bioconjugate chemistry.

[38]  Mark Voorneveld,et al.  Preparation , 2018, Games Econ. Behav..

[39]  Mark E. Davis,et al.  Antitumor activity of beta-cyclodextrin polymer-camptothecin conjugates. , 2004, Molecular pharmaceutics.

[40]  Jianjun Cheng,et al.  Antitumor Activity of β-Cyclodextrin Polymer−Camptothecin Conjugates , 2004 .

[41]  P. Munster,et al.  Phase II Trial of Karenitecin in Patients with Malignant Melanoma: Clinical and Translational Study , 2005, Clinical Cancer Research.

[42]  PEGylated Proteins as Cancer Therapeutics , 2006 .

[43]  John W. Park,et al.  Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. , 2006, Cancer research.

[44]  Paul Workman,et al.  Pharmacodynamic biomarkers for molecular cancer therapeutics. , 2007, Advances in cancer research.

[45]  Nelson Durán,et al.  New aspects of nanopharmaceutical delivery systems. , 2008, Journal of nanoscience and nanotechnology.

[46]  P. Eklund,et al.  Electronic properties of semiconductor nanowires. , 2008, Journal of nanoscience and nanotechnology.

[47]  Mark E. Davis,et al.  Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. , 2009, Advanced drug delivery reviews.

[48]  R. Fram,et al.  XMT-1001, a novel polymeric camptothecin pro-drug in clinical development for patients with advanced cancer. , 2009, Advanced drug delivery reviews.

[49]  Patricia Kraft,et al.  Marked therapeutic efficacy of a novel polyethylene glycol-SN38 conjugate, EZN-2208, in xenograft models of B-cell non-Hodgkin’s lymphoma , 2009, Haematologica.

[50]  Robert Langer,et al.  Nanoparticle technologies for cancer therapy. , 2010, Handbook of experimental pharmacology.

[51]  V. Venditto,et al.  Cancer therapies utilizing the camptothecins: a review of the in vivo literature. , 2010, Molecular pharmaceutics.

[52]  Stefan Thurner,et al.  Peer-review in a world with rational scientists: Toward selection of the average , 2010, 1008.4324.

[53]  Jean M. J. Fréchet,et al.  Soluble Polymer Carriers for the Treatment of Cancer: The Importance of Molecular Architecture , 2010 .

[54]  Mauro Ferrari,et al.  Nanomedicine in cancer therapy: Innovative trends and prospects , 2011, Cancer science.

[55]  R. Duncan,et al.  Nanomedicine(s) under the microscope. , 2011, Molecular pharmaceutics.

[56]  M. Ratner Pfizer reaches out to academia—again , 2011, Nature Biotechnology.

[57]  R. Feynman There’s plenty of room at the bottom , 2011 .

[58]  L. McNamee,et al.  Patterns of technological innovation in biotech , 2012, Nature Biotechnology.

[59]  Y. Barenholz Doxil®--the first FDA-approved nano-drug: lessons learned. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[60]  Louis M. Weiner,et al.  Antibody-Based Immunotherapy of Cancer , 2012, Cell.

[61]  Tom Quirk,et al.  There’s Plenty of Room at the Bottom , 2006, Size Really Does Matter.

[62]  Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma , 2022 .