Elucidation of the Sodium‐Storage Mechanism in Hard Carbons

[1]  Jia Ding,et al.  High-density sodium and lithium ion battery anodes from banana peels. , 2014, ACS nano.

[2]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[3]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[4]  X. Lou,et al.  A Practical High-Energy Cathode for Sodium-Ion Batteries Based on Uniform P2-Na0.7 CoO2 Microspheres. , 2017, Angewandte Chemie.

[5]  Yan Yu,et al.  Confined Amorphous Red Phosphorus in MOF‐Derived N‐Doped Microporous Carbon as a Superior Anode for Sodium‐Ion Battery , 2017, Advanced materials.

[6]  G. Ceder,et al.  Additional Sodium Insertion into Polyanionic Cathodes for Higher‐Energy Na‐Ion Batteries , 2017 .

[7]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[8]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[9]  Yong‐Sheng Hu,et al.  A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries , 2016 .

[10]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[11]  Jun Chen,et al.  All organic sodium-ion batteries with Na₄C₈H₂O₆. , 2014, Angewandte Chemie.

[12]  Yong‐Sheng Hu,et al.  Hard Carbon Microtubes Made from Renewable Cotton as High‐Performance Anode Material for Sodium‐Ion Batteries , 2016 .

[13]  Jiangwei Wang,et al.  High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries , 2017 .

[14]  Bao-jun Yu,et al.  Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries , 2014 .

[15]  Xingguo Qi,et al.  Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications , 2016 .

[16]  Zhe Hu,et al.  Carbon‐Coated Na3.32Fe2.34(P2O7)2 Cathode Material for High‐Rate and Long‐Life Sodium‐Ion Batteries , 2017, Advanced materials.

[17]  Hyunchul Kim,et al.  Sodium intercalation chemistry in graphite , 2015 .

[18]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[19]  Yitai Qian,et al.  Ultramicroporous Carbon through an Activation-Free Approach for Li-S and Na-S Batteries in Carbonate-Based Electrolyte. , 2017, ACS applied materials & interfaces.

[20]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[21]  Nagore Ortiz-Vitoriano,et al.  High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries , 2017 .

[22]  Jianneng Liang,et al.  Ultrafine MoO2‐Carbon Microstructures Enable Ultralong‐Life Power‐Type Sodium Ion Storage by Enhanced Pseudocapacitance , 2017 .

[23]  Leping Yang,et al.  Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries , 2017 .

[24]  K. Kang,et al.  Sodium Storage Behavior in Natural Graphite using Ether‐based Electrolyte Systems , 2015 .

[25]  A. Cooper,et al.  Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. , 2008, Journal of the American Chemical Society.

[26]  Kazuma Gotoh,et al.  NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery , 2013 .

[27]  Adam P. Cohn,et al.  Ultrafast Solvent-Assisted Sodium Ion Intercalation into Highly Crystalline Few-Layered Graphene. , 2016, Nano letters.

[28]  Jun Chen,et al.  Bulk Bismuth as a High‐Capacity and Ultralong Cycle‐Life Anode for Sodium‐Ion Batteries by Coupling with Glyme‐Based Electrolytes , 2017, Advanced materials.

[29]  J. Carrasco,et al.  Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers , 2015 .

[30]  Yu-Guo Guo,et al.  High‐Energy/Power and Low‐Temperature Cathode for Sodium‐Ion Batteries: In Situ XRD Study and Superior Full‐Cell Performance , 2017, Advanced materials.

[31]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[32]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[33]  J. Tarascon,et al.  Correlation Between Microstructure and Na Storage Behavior in Hard Carbon , 2016 .

[34]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[35]  D. Stevens,et al.  An In Situ Small‐Angle X‐Ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell , 2000 .

[36]  Yinzhu Jiang,et al.  A High Capacity, Good Safety and Low Cost Na2FeSiO4-Based Cathode for Rechargeable Sodium-Ion Battery. , 2017, ACS applied materials & interfaces.

[37]  Haoshen Zhou,et al.  A new layered sodium molybdenum oxide anode for full intercalation-type sodium-ion batteries , 2015 .

[38]  Xiangwu Zhang,et al.  Centrifugally-spun carbon microfibers and porous carbon microfibers as anode materials for sodium-ion batteries , 2016 .

[39]  Jun Liu,et al.  Sodium ion insertion in hollow carbon nanowires for battery applications. , 2012, Nano letters.

[40]  Huanlei Wang,et al.  Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. , 2013, ACS nano.

[41]  Quan-hong Yang,et al.  Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries , 2016 .

[42]  Enhanced Performance of P2‐Na0.66(Mn0.54Co0.13Ni0.13)O2 Cathode for Sodium‐Ion Batteries by Ultrathin Metal Oxide Coatings via Atomic Layer Deposition , 2017 .

[43]  Jun Liu,et al.  Manipulating Adsorption–Insertion Mechanisms in Nanostructured Carbon Materials for High‐Efficiency Sodium Ion Storage , 2017 .

[44]  Clement Bommier,et al.  Mechanism of Na‐Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping , 2017 .

[45]  Gaoping Cao,et al.  Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery. , 2017, ACS applied materials & interfaces.

[46]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[47]  Lei Zhang,et al.  Free‐Standing Nitrogen‐Doped Carbon Nanofiber Films: Integrated Electrodes for Sodium‐Ion Batteries with Ultralong Cycle Life and Superior Rate Capability , 2016 .

[48]  Yuesheng Wang,et al.  P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries , 2015, Nature Communications.

[49]  Hong Li,et al.  Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries , 2015, Science Advances.

[50]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[51]  Huaping Zhao,et al.  Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries , 2017 .

[52]  Yan Yu,et al.  Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. , 2014, Nanoscale.

[53]  Y. Liu,et al.  Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance , 2014 .

[54]  Zhiqiang Zhu,et al.  Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries , 2015 .

[55]  Xiaogang Han,et al.  Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. , 2013, ACS nano.

[56]  Li-Jun Wan,et al.  A High‐Energy Room‐Temperature Sodium‐Sulfur Battery , 2014, Advanced materials.

[57]  Xiulei Ji,et al.  New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon. , 2015, Nano letters.