Highly tunable large core single-mode liquid crystal photonic bandgap fiber

We demonstrate a highly tunable photonic bandgap fiber, which has a core diameter of 25 mm, and a bandgap tuning sensitivity of 27 nm/degC at room temperature. The insertion loss is estimated to be less than 0.5 dB.

[1]  J. Joannopoulos,et al.  Erratum: Accurate theoretical analysis of photonic band-gap materials [Phys. Rev. B 48, 8434 (1993)] , 1997 .

[2]  Jun Li,et al.  All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. , 2004, Optics express.

[3]  Shin-Tson Wu,et al.  Temperature effect on liquid crystal refractive indices , 2004 .

[4]  Shin-Tson Wu,et al.  Extended Cauchy equations for the refractive indices of liquid crystals , 2004 .

[5]  Highly tunable large core single-mode liquid crystal photonic bandgap fiber , 2006, QELS 2006.

[6]  P Steinvurzel,et al.  Long wavelength anti-resonant guidance in high index inclusion microstructured fibers. , 2004, Optics express.

[7]  C. Jen,et al.  Analysis of cladded uniaxial single-crystal fibers , 1991 .

[8]  A. Bjarklev,et al.  Coupling reducing k-points for photonic crystal fiber calculations , 2003 .

[9]  Anders Bjarklev,et al.  Optical devices based on liquid crystal photonic bandgap fibres. , 2003, Optics express.

[10]  B. Eggleton,et al.  Application of an ARROW model for designing tunable photonic devices. , 2004, Optics express.

[11]  A. Bjarklev,et al.  Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber , 2005, IEEE Photonics Technology Letters.

[12]  Robert S. Windeler,et al.  Tunable photonic band gap fiber , 2002, Optical Fiber Communication Conference and Exhibit.

[13]  J. Joannopoulos,et al.  Accurate theoretical analysis of photonic band-gap materials. , 1993, Physical review. B, Condensed matter.

[14]  Jun Li,et al.  High temperature-gradient refractive index liquid crystals. , 2004, Optics express.

[15]  B. Eggleton,et al.  Microstructured optical fiber devices. , 2001, Optics express.

[16]  John A. Rogers,et al.  Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber , 2002 .

[17]  Anders Bjarklev,et al.  Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. , 2005, Optics express.

[18]  Shin-Tson Wu,et al.  Electrically tunable liquid-crystal photonic crystal fiber , 2004 .

[19]  Jesper Lægsgaard,et al.  Gap formation and guided modes in photonic bandgap fibres with high-index rods , 2004 .

[20]  H R Simonsen,et al.  Improved large-mode-area endlessly single-mode photonic crystal fibers. , 2003, Optics letters.

[21]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.