High-order quantum algorithm for solving linear differential equations

Linear differential equations are ubiquitous in science and engineering. Quantum computers can simulate quantum systems, which are described by a restricted type of linear differential equations. Here we extend quantum simulation algorithms to general inhomogeneous sparse linear differential equations, which describe many classical physical systems. We examine the use of high-order methods (where the error over a time step is a high power of the size of the time step) to improve the efficiency. These provide scaling close to Δt2 in the evolution time Δt. As with other algorithms of this type, the solution is encoded in amplitudes of the quantum state, and it is possible to extract global features of the solution.

[1]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[2]  Andris Ambainis,et al.  Variable time amplitude amplification and quantum algorithms for linear algebra problems , 2012, STACS.

[3]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[4]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[5]  Olof B. Widlund,et al.  A note on unconditionally stable linear multistep methods , 1967 .

[6]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[7]  Christof Zalka Simulating quantum systems on a quantum computer , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[9]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[10]  Rolf Dieter Grigorieff,et al.  Über A (α)-stabile Verfahren hoher Konsistenzordnung , 2005, Computing.

[11]  Petr Hliněný,et al.  Mathematical Foundations of Computer Science 2010, 35th International Symposium, MFCS 2010, Brno, Czech Republic, August 23-27, 2010. Proceedings , 2010, MFCS.

[12]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[13]  Christof Zalka Efficient Simulation of Quantum Systems by Quantum Computers , 1996, quant-ph/9603026.

[14]  M. Freedman,et al.  Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.

[15]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[16]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.

[17]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[18]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[19]  Matematik,et al.  Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[20]  Andrew M. Childs,et al.  Quantum information processing in continuous time , 2004 .

[21]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[22]  R. Feynman Simulating physics with computers , 1999 .

[23]  R. Feynman Quantum mechanical computers , 1986 .

[24]  Lov K. Grover,et al.  Synthesis of quantum superpositions by quantum computation , 2000, Physical review letters.

[25]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[26]  Tobias J. Osborne,et al.  A quantum algorithm to solve nonlinear differential equations , 2008, 0812.4423.

[27]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[28]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[29]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[30]  T. E. Hull,et al.  Comparing Numerical Methods for Ordinary Differential Equations , 1972 .

[31]  Andris Ambainis,et al.  New Developments in Quantum Algorithms , 2010, MFCS.