Intensity and feature based stereo matching by disparity parameterization

In this paper, we propose a new solution to the stereo correspondence problem by including features an intensity based matching. The features we use are intensity gradients in both the x and y directions of the left and the deformed right images. Although a uniform smoothness constraint is still used, it is nevertheless applied only to non-feature regions. To avoid local minima in function minimization, we propose to parameterize the disparity function by hierarchical Gaussians. A simple stochastic gradient method is used to estimate the Gaussian weights. Experiments with various real stereo images show robust performances.

[1]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  A. Ardeshir Goshtasby,et al.  Curve Fitting by a Sum of Gaussians , 1994, CVGIP Graph. Model. Image Process..

[3]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[4]  John E. W. Mayhew,et al.  Psychophysical and Computational Studies Towards a Theory of Human Stereopsis , 1981, Artif. Intell..

[5]  Narendra Ahuja,et al.  Matching Two Perspective Views , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  W. Eric L. Grimson,et al.  Computational Experiments with a Feature Based Stereo Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[8]  William B. Thompson,et al.  Disparity Analysis of Images , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[10]  Alan L. Yuille,et al.  Multilevel Enhancement and Detection of Stereo Disparity Surfaces , 1995, Artif. Intell..

[11]  Ingemar J. Cox,et al.  A Maximum Likelihood Stereo Algorithm , 1996, Comput. Vis. Image Underst..

[12]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[13]  Ramakant Nevatia,et al.  Segment-based stereo matching , 1985, Comput. Vis. Graph. Image Process..

[14]  Narendra Ahuja,et al.  Surfaces from Stereo: Integrating Feature Matching, Disparity Estimation, and Contour Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Rama Chellappa,et al.  Estimation of Illuminant Direction, Albedo, and Shape from Shading , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Gerd Hirzinger,et al.  Parametric Shape-from-Shading by Radial Basis Functions , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Demetri Terzopoulos,et al.  Image Analysis Using Multigrid Relaxation Methods , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[21]  Richard Szeliski,et al.  Motion Estimation with Quadtree Splines , 1996, IEEE Trans. Pattern Anal. Mach. Intell..